Communications
Blockset

For Use with Simulink®

Modeling
Simulation

Implementation

Reference <4\The MathWorks

Version 3

LN

How to Contact The MathWorks

www . mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Commaunications Blockset Reference
© COPYRIGHT 2001-2006 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

May 2001 Online only
July 2002 Online only
June 2004 Online only
October 2004 Online only
March 2005 Online only
September 2005 Online only
March 2006 Online only

September 2006 Online only

New for Version 2.0.1 (Release 12.1)
Revised for Version 2.5 (Release 13)
Revised for Version 3.0 (Release 14)
Revised for Version 3.0.1 (Release 14SP1)
Revised for Version 3.1 (Release 14SP2)
Revised for Version 3.2 (Release 14SP3)
Revised for Version 3.3 (Release 2006a)
Revised for Version 3.4 (Release 2006b)

Blocks — By Category

Communications Sources, 1-2
Random Data Sourceso, 1-2
Noise Generatorsuiiieiieeenneennnnns 1-2
Sequence Generators 1-2

Communications Sinks 1-3

Source Coding, 1-3

Error Detection and Correction 1-4
Block Codingcoiiiiiiiiiiiiii i 14
Convolutional Coding i, 1-5
Cyclic Redundancy Check Coding 1-5

Interleaving i 1-6
Block Interleaving i, 1-6
Convolutional Interleaving 1-7

Modulation e 1-7
Digital Baseband AM Sublibrary 1-7
Digital Baseband PM Sublibrary 1-8
Digital Baseband FM Sublibrary 1-8
Digital Baseband CPM Sublibrary 1-9
Digital Baseband TCM Sublibrary 1-9
Analog Passband Modulation 1-10

Communications Filters 1-10

Channels it 1-11

RF Impairmentsc0i0iiiiiiinneen.. 1-11

vi

Contents

Synchronization 00, 1-12

Carrier Phase Recovery, 1-12
Timing Phase Recovery 1-12
Synchronization Components 1-13
Equalizers i i 1-13
Sequence Operations 1-14
Utility Blocks ittt 1-15

Blocks — Alphabetical List

Functions — Alphabetical List

Index

Blocks — By Category

Communications Sources (p. 1-2)

Communications Sinks (p. 1-3)

Source Coding (p. 1-3)

Error Detection and Correction
(p. 1-4)

Interleaving (p. 1-6)
Modulation (p. 1-7)

Communications Filters (p. 1-10)
Channels (p. 1-11)
RF Impairments (p. 1-11)

Synchronization (p. 1-12)

Equalizers (p. 1-13)
Sequence Operations (p. 1-14)

Utility Blocks (p. 1-15)

Sources of random and nonrandom
data

Error statistics and plotting

Quantization, companding, and
differential coding

Block, convolutional, and CRC
coding

Block and convolutional interleaving

Digital baseband and analog
passband modulation

Filtering and pulse shaping
Modeling channel impairments

Modeling impairments caused by the
radio frequency components

Phase recovery methods and
phase-locked loops

Adaptive and MLSE equalizers

Scrambling, puncturing, and other
operations on sequences

Miscellaneous relevant blocks

1 Blocks — By Category

Communications Sources

Random Data Sources

Bernoulli Binary Generator Generate Bernoulli-distributed
random binary numbers

Poisson Integer Generator Generate Poisson-distributed
random integers

Random Integer Generator Generate integers randomly
distributed in range [0, M-1]
Noise Generators

Gaussian Noise Generator Generate Gaussian distributed noise
with given mean and variance values

Rayleigh Noise Generator Generate Rayleigh distributed noise
Rician Noise Generator Generate Rician distributed noise
Uniform Noise Generator Generate uniformly distributed noise

between upper and lower bounds

Sequence Generators

Barker Code Generator Generate Barker Code

Gold Sequence Generator Generate Gold sequence from set of
sequences

Hadamard Code Generator Generate Hadamard code from

orthogonal set of codes

Kasami Sequence Generator Generate Kasami sequence from set
of Kasami sequences

OVSF Code Generator Generate orthogonal variable
spreading factor (OVSF) code from
set of orthogonal codes

Communications Sinks

PN Sequence Generator
Walsh Code Generator

Communications Sinks

Discrete-Time Eye Diagram Scope

Discrete-Time Scatter Plot Scope

Discrete-Time Signal Trajectory
Scope

Error Rate Calculation

Source Coding

A-Law Compressor

A-Law Expander

Differential Decoder

Differential Encoder

Mu-Law Compressor

Generate pseudonoise sequence

Generate Walsh code from
orthogonal set of codes

Display multiple traces of modulated
signal

Display in-phase and quadrature
components of modulated signal
constellation

Plot modulated signal’s in-phase
component versus its quadrature
component

Compute bit error rate or symbol
error rate of input data

Implement A-law compressor for
source coding

Implement A-law expander for
source coding

Decode binary signal using
differential coding

Encode binary signal using
differential coding

Implement p-law compressor for
source coding

1 Blocks — By Category

Mu-Law Expander
Quantizing Decoder

Quantizing Encoder

Error Detection and Correction

Block Coding

BCH Decoder

BCH Encoder

Binary Cyclic Decoder
Binary Cyclic Encoder
Binary Linear Decoder
Binary Linear Encoder
Binary-Input RS Encoder
Binary-Output RS Decoder
Hamming Decoder

Hamming Encoder

Implement p-law expander for
source coding

Decode quantization index according
to codebook

Quantize signal using partition and
codebook

Decode BCH code to recover binary
vector data

Create BCH code from binary vector
data

Decode systematic cyclic code to
recover binary vector data

Create systematic cyclic code from
binary vector data

Decode linear block code to recover
binary vector data

Create linear block code from binary
vector data

Create Reed-Solomon code from
binary vector data

Decode Reed-Solomon code to recover
binary vector data

Decode Hamming code to recover
binary vector data

Create Hamming code from binary
vector data

Error Detection and Correction

Integer-Input RS Encoder Create Reed-Solomon code from
integer vector data

Integer-Output RS Decoder Decode Reed-Solomon code to recover
integer vector data

Convolutional Coding
APP Decoder Decode convolutional code using a
posteriori probability (APP) method

Convolutional Encoder Create convolutional code from
binary data

Viterbi Decoder Decode convolutionally encoded data
using Viterbi algorithm

Cyclic Redundancy Check Coding

CRC-N Generator Generate CRC bits according to CRC
method and append to input data
frames

CRC-N Syndrome Detector Detect errors in input data frames
according to selected CRC method

General CRC Generator Generate CRC bits according to

generator polynomial and append to
input data frames

General CRC Syndrome Detector Detect errors in input data frames
according to generator polynomial

1 Blocks — By Category

Interleaving

Block Interleaving

Algebraic Deinterleaver Restore ordering of input symbols
using algebraically derived
permutation

Algebraic Interleaver Reorder input symbols using
algebraically derived permutation
table

General Block Deinterleaver Restore ordering of symbols in input
vector

General Block Interleaver Reorder symbols in input vector

Matrix Deinterleaver Permute input symbols by filling
matrix by columns and emptying it
by rows

Matrix Helical Scan Deinterleaver Restore ordering of input symbols by
filling matrix along diagonals

Matrix Helical Scan Interleaver Permute input symbols by selecting
matrix elements along diagonals

Matrix Interleaver Permute input symbols by filling
matrix by rows and emptying it by
columns

Random Deinterleaver Restore ordering of input symbols
using random permutation

Random Interleaver Reorder input symbols using random
permutation

Modulation

Convolutional Interleaving

Convolutional Deinterleaver Restore ordering of symbols that
were permuted using shift registers

Convolutional Interleaver Permute input symbols using set of
shift registers

General Multiplexed Deinterleaver = Restore ordering of symbols using
specified-delay shift registers

General Multiplexed Interleaver Permute input symbols using set of
shift registers with specified delays

Helical Deinterleaver Restore ordering of symbols
permuted by helical interleaver

Helical Interleaver Permute input symbols using helical
array

Modulation

Digital Baseband AM Sublibrary
General QAM Demodulator Demodulate QAM-modulated data
Baseband

General QAM Modulator Baseband Modulate using quadrature
amplitude modulation

M-PAM Demodulator Baseband Demodulate PAM-modulated data

M-PAM Modulator Baseband Modulate using M-ary pulse
amplitude modulation

Rectangular QAM Demodulator Demodulate

Baseband rectangular-QAM-modulated
data

Rectangular QAM Modulator Modulate using rectangular

Baseband quadrature amplitude modulation

1-7

1 Blocks — By Category

Digital Baseband PM Sublibrary

BPSK Demodulator Baseband
BPSK Modulator Baseband

DBPSK Demodulator Baseband
DBPSK Modulator Baseband

DQPSK Demodulator Baseband

DQPSK Modulator Baseband

M-DPSK Demodulator Baseband

M-DPSK Modulator Baseband

M-PSK Demodulator Baseband
M-PSK Modulator Baseband

OQPSK Demodulator Baseband

OQPSK Modulator Baseband

QPSK Demodulator Baseband
QPSK Modulator Baseband

Demodulate BPSK-modulated data
Modulate using binary phase shift
keying method

Demodulate DBPSK-modulated data

Modulate using differential binary
phase shift keying method

Demodulate DQPSK-modulated
data

Modulate using differential
quaternary phase shift keying
method

Demodulate DPSK-modulated data

Modulate using M-ary differential
phase shift keying method

Demodulate PSK-modulated data

Modulate using M-ary phase shift
keying method

Demodulate OQPSK-modulated
data

Modulate using offset quadrature
phase shift keying method

Demodulate QPSK-modulated data

Modulate using quaternary phase
shift keying method

Digital Baseband FM Sublibrary

M-FSK Demodulator Baseband
M-FSK Modulator Baseband

Demodulate FSK-modulated data

Modulate using M-ary frequency
shift keying method

Modulation

Digital Baseband CPM Sublibrary

CPFSK Demodulator Baseband
CPFSK Modulator Baseband

CPM Demodulator Baseband
CPM Modulator Baseband

GMSK Demodulator Baseband
GMSK Modulator Baseband

MSK Demodulator Baseband
MSK Modulator Baseband

Demodulate CPFSK-modulated data

Modulate using continuous phase
frequency shift keying method

Demodulate CPM-modulated data

Modulate using continuous phase
modulation

Demodulate GMSK-modulated data

Modulate using Gaussian minimum
shift keying method

Demodulate MSK-modulated data

Modulate using minimum shift
keying method

Digital Baseband TCM Sublibrary

General TCM Decoder

General TCM Encoder

M-PSK TCM Decoder

M-PSK TCM Encoder

Rectangular QAM TCM Decoder

Rectangular QAM TCM Encoder

Decode trellis-coded modulation
data, mapped using arbitrary
constellation

Convolutionally encode binary
data and map using arbitrary
constellation

Decode trellis-coded modulation
data, modulated using PSK method

Convolutionally encode binary data
and modulate using PSK method

Decode trellis-coded modulation
data, modulated using QAM method

Convolutionally encode binary data
and modulate using QAM method

1-9

1 Blocks — By Category

Analog Passband Modulation

DSB AM Demodulator Passband Demodulate DSB-AM-modulated
data
DSB AM Modulator Passband Modulate using double-sideband

amplitude modulation

DSBSC AM Demodulator Passband Demodulate DSBSC-AM-modulated
data

DSBSC AM Modulator Passband Modulate using double-sideband
suppressed-carrier amplitude

modulation
FM Demodulator Passband Demodulate FM-modulated data
FM Modulator Passband Modulate using frequency
modulation
PM Demodulator Passband Demodulate PM-modulated data
PM Modulator Passband Modulate using phase modulation
SSB AM Demodulator Passband Demodulate SSB-AM-modulated
data
SSB AM Modulator Passband Modulate using single-sideband

amplitude modulation

Communications Filters

Gaussian Filter Filter input signal, possibly
downsampling, using Gaussian FIR
filter

Ideal Rectangular Pulse Filter Shape input signal using ideal

rectangular pulses

Integrate and Dump Integrate discrete-time signal,
resetting to zero periodically

1-10

Channels

Channels

Raised Cosine Receive Filter

Raised Cosine Transmit Filter

Windowed Integrator

AWGN Channel

Binary Symmetric Channel
Multipath Rayleigh Fading Channel

Multipath Rician Fading Channel

RF Impairments

Free Space Path Loss

1/Q Imbalance

Memoryless Nonlinearity

Phase Noise

Filter input signal, possibly
downsampling, using raised cosine
FIR filter

Upsample and filter input signal
using raised cosine FIR filter

Integrate over time window of fixed
length

Add white Gaussian noise to input
signal

Introduce binary errors

Simulate multipath Rayleigh fading
propagation channel

Simulate multipath Rician fading
propagation channel

Reduce amplitude of input signal by
amount specified

Create complex baseband model
of signal impairments caused by
imbalances between in-phase and
quadrature receiver components

Apply memoryless nonlinearity to
complex baseband signal

Apply receiver phase noise to
complex baseband signal

1-11

1 Blocks — By Category

Phase/Frequency Offset

Receiver Thermal Noise

Synchronization
Carrier Phase Recovery
CPM Phase Recovery

M-PSK Phase Recovery

Timing Phase Recovery

Early-Late Gate Timing Recovery
Gardner Timing Recovery
MSK-Type Signal Timing Recovery
Mueller-Muller Timing Recovery

Squaring Timing Recovery

1-12

Apply phase and frequency offsets to
complex baseband signal

Apply receiver thermal noise to
complex baseband signal

Recover carrier phase using
2P-Power method

Recover carrier phase using M-Power
method

Recover symbol timing phase using
early-late gate method

Recover symbol timing phase using
Gardner’s method

Recover symbol timing phase using
fourth-order nonlinearity method

Recover symbol timing phase using
Mueller-Muller method

Recover symbol timing phase using
squaring method

Equalizers

Equalizers

Synchronization Components

Baseband PLL

Charge Pump PLL

Continuous-Time VCO

Discrete-Time VCO

Linearized Baseband PLL

Phase-Locked Loop

CMA Equalizer

LMS Decision Feedback Equalizer

LMS Linear Equalizer

MLSE Equalizer

Normalized LMS Decision Feedback
Equalizer

Implement baseband phase-locked
loop

Implement charge pump
phase-locked loop using digital
phase detector

Implement voltage-controlled
oscillator

Implement voltage-controlled
oscillator in discrete time

Implement linearized version of
baseband phase-locked loop

Implement phase-locked loop to
recover phase of input signal

Equalize using constant modulus
algorithm

Equalize using decision feedback
equalizer that updates weights with
LMS algorithm

Equalize using linear equalizer
that updates weights with LMS
algorithm

Equalize using Viterbi algorithm

Equalize using decision feedback
equalizer that updates weights with
normalized LMS algorithm

1-13

1 Blocks — By Category

Normalized LMS Linear Equalizer
RLS Decision Feedback Equalizer
RLS Linear Equalizer

Sign LMS Decision Feedback
Equalizer

Sign LMS Linear Equalizer

Variable Step LMS Decision
Feedback Equalizer

Variable Step LMS Linear Equalizer

Sequence Operations

Deinterlacer

Derepeat

Descrambler

Insert Zero

1-14

Equalize using linear equalizer that
updates weights with normalized
LMS algorithm

Equalize using decision feedback
equalizer that updates weights with
RLS algorithm

Equalize using linear equalizer
that updates weights using RLS
algorithm

Equalize using decision feedback
equalizer that updates weights with
signed LMS algorithm

Equalize using linear equalizer that
updates weights with signed LMS
algorithm

Equalize using decision feedback
equalizer that updates weights with
variable-step-size LMS algorithm

Equalize using linear equalizer
that updates weights with
variable-step-size LMS algorithm

Distribute elements of input vector
alternately between two output
vectors

Reduce sampling rate by averaging
consecutive samples

Descramble input signal

Distribute input elements in output
vector

Utility Blocks

Interlacer

Puncture

Scrambler

Utility Blocks

Align Signals

Bipolar to Unipolar Converter

Bit to Integer Converter

Complex Phase Difference

Complex Phase Shift

Data Mapper

Find Delay

Integer to Bit Converter

Unipolar to Bipolar Converter

Alternately select elements from
two input vectors to generate output
vector

Output elements which correspond
to 1s in binary Puncture vector

Scramble input signal

Align two signals by finding delay
between them

Map bipolar signal into unipolar
signal in range [0, M-1]

Map vector of bits to corresponding
vector of integers

Output phase difference between
two complex input signals

Shift phase of complex input signal
by second input value

Map integer symbols from one coding
scheme to another

Find delay between two signals

Map vector of integers to vector of
bits

Map unipolar signal in range [0, M-1]
into bipolar signal

1-15

1 Blocks — By Category

1-16

Blocks — Alphabetical List

A-Law Compressor

Purpose
Library

Description

A-Law
Comprassar

Dialog
Box

Implement A-law compressor for source coding
Source Coding

The A-Law Compressor block implements an A-law compressor for the
input signal. The formula for the A-law compressor is

Alx| \%
_— for 0 <|x|<—
1+10gAsgn(x) or 0 < |x| "

y:
V(1+1log(Al|x|/V
(=+ Og(|x|))sgn(x) for K<|x|SV
1+logA A

where A is the A-law parameter of the compressor, V is the peak signal
magnitude for x, log is the natural logarithm, and sgn is the signum
function (sign in MATLAB®).

The most commonly used A value is 87.6.

The input can have any shape or frame status. This block processes
each vector element independently.

Block Parameters: A-Law Compressor 2=l

—&-Law Compressor [mazk]

Compress the input signal using A-law compression.

The input can have any shape or frame status. This block processes each vector
element independently.

=)
F

A value:

Peak signal magnitude:
1

Ok Lancel Help Apply

A value

The A-law parameter of the compressor.

A-Law Compressor

Pair Block
See Also

References

Peak signal magnitude
The peak value of the input signal. This is also the peak value of
the output signal.

A-Law Expander
Mu-Law Compressor

[1] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Englewood Cliffs, N.J., Prentice-Hall, 1988.

2-3

A-Law Expander

Purpose Implement A-law expander for source coding
Librclry Source Coding
Description The A-Law Expander block recovers data that the A-Law Compressor
block compressed. The formula for the A-law expander, shown below, is
AcLaw the inverse of the compressor function.
Expander
A 1+logA
X =
\%
e 1+logA)/V -1)—s for <|ly|£V
xp(ly|(1-+1log A)/V -1) Zrsgn(y) for -7t <yl

The input can have any shape or frame status. This block processes
each vector element independently.

H "
Dla Iog E! Block Parameters: A-Law Expander ﬂﬂ
—&-Law Expander [mazk]
Box ,

Expand the signal using inverse A-law compression.

The input can have any shape or frame status. This block processes each vectar
element independently.

Peak signal magnitude:
1

Ok Lancel Help Apply

A value
The A-law parameter of the compressor.

Peak signal magnitude
The peak value of the input signal. This is also the peak value of
the output signal.

A-Law Expander

Pair Block
See Also

References

Match these parameters to the ones in the corresponding A-Law
Compressor block.

A-Law Compressor
Mu-Law Expander

[1] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Englewood Cliffs, N.J., Prentice-Hall, 1988.

2-5

Algebraic Deinterleaver

Purpose

Library

Description

Algebraic
Deinterleaver

Restore ordering of input symbols using algebraically derived
permutation

Block sublibrary of Interleaving

The Algebraic Deinterleaver block restores the original ordering of a
sequence that was interleaved using the Algebraic Interleaver block. In
typical usage, the parameters in the two blocks have the same values.

The Number of elements parameter, N, indicates how many numbers
are in the input vector. If the input is frame-based, then it must be a
column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

The Type parameter indicates the algebraic method that the block
uses to generate the appropriate permutation table. Choices are
Takeshita-Costello and Welch-Costas. Each of these methods has
parameters and restrictions that are specific to it; these are described
on the reference page for the Algebraic Interleaver block.

Algebraic Deinterleaver

Dialog
Box

ElBlock Parameters: Algebraic Deinterleaver 2=l

—algebraic Deint [mazk]

Deinterleave the elements of the input vector uzing an algebraically derived
permutation table.

For the Takeshita-Costello type interleaver, the Number of elements M must be a
power of 2, the Multiplicative factor must be an odd integer less than M, and the
Cyclic zhift must be a nonnegative integer less than M.

For the Welch-Costas type interleaver, the Mumber of elements N must be specified
zuch that M+1 iz prime and the Primitive element must be a primitive element from
GF[M+1].

In each case, the Mumber of elements must match the input signal width.

) |
F

Type:

Mumber of elements:
|256

Multiplicative factor:
iE

Cyclic shift:

Jo

Ok Lancel Help Apply

Type
The type of permutation table that the block uses for
deinterleaving. Choices are Takeshita-Costello and
Welch-Costas.

Number of elements
The number of elements, N, in the input vector.

Multiplicative factor
The factor used to compute the corresponding interleaver’s
cycle vector. This field appears only if Type is set to
Takeshita-Costello.

Cyeclic shift
The amount by which the block shifts indices when creating the
corresponding interleaver’s permutation table. This field appears
only if Type is set to Takeshita-Costello.

2-7

Algebraic Deinterleaver

2-8

Pair Block
See Also

References

Primitive element
An element of order N in the finite field GF(N+1). This field
appears only if Type is set to Welch-Costas.

Algebraic Interleaver
General Block Deinterleaver

[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston:
Kluwer Academic Publishers, 1999.

[2] Takeshita, O. Y. and D. J. Costello, Jr. "New Classes Of Algebraic
Interleavers for Turbo-Codes." Proc. 1998 IEEE International
Symposium on Information Theory, Boston, Aug. 16-21, 1998. 419.

Algebraic Interleaver

Purpose
Library

Description

Algebraic
Interleawer

Reorder input symbols using algebraically derived permutation table
Block sublibrary of Interleaving

The Algebraic Interleaver block rearranges the elements of its input
vector using a permutation that is algebraically derived. The Number
of elements parameter, N, indicates how many numbers are in the
input vector. If the input is frame-based, then it must be a column
vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

The Type parameter indicates the algebraic method that the block
uses to generate the appropriate permutation table. Choices are
Takeshita-Costello and Welch-Costas. Each of these methods has
parameters and restrictions that are specific to it:

e If Type is set to Welch-Costas, then N+1 must be prime. The
Primitive element parameter is an integer, A, between 1 and N
that represents a primitive element of the finite field GF(N+1). This
means that every nonzero element of GF(N+1) can be expressed as
A raised to some integer power.

In a Welch-Costas interleaver, the permutation maps the integer k
to mod(AK,N+1) - 1.

e If Type is set to Takeshita-Costello, then N must be 2™ for some
integer m. The Multiplicative factor parameter, h, must be an
odd integer less than N. The Cyclic shift parameter, k, must be a
nonnegative integer less than N.

A Takeshita-Costello interleaver uses a length-N cycle vector whose
nth element is

mod(k*(n-1)*n/2, N)

for integers n between 1 and N. The block creates a permutation
vector by listing, for each element of the cycle vector in ascending

Algebraic Interleaver

order, one plus the element’s successor. The interleaver’s actual
permutation table is the result of shifting the elements of the
permutation vector left by the Cyclic shift parameter. (The block
performs all computations on numbers and indices modulo N.)

H o
Dla Iog E! Block Parameters: Algebraic Interleaver '_ ﬂﬂ
Box —algebraic Interl [mazk]
Interleave the elements of the input vectar using an algebraically derived permutation
table.

For the Takeshita-Costello type interleaver, the Mumber of elements N must be a
power of 2, the Multiplicative factor must be an odd integer less than M, and the
Cyclic zhift must be a nonnegative integer less than M.

For the Welch-Costas type interleaver, the Mumber of elements M must be specified
such that M+1 iz prime and the Primitive element must be a primitive element from
GF[M+1].

In each case, the Mumber of elements must match the input signal width.

=
F

Type:

Mumber of elements:
|256

Multiplicative factor:
iE

Cyclic shift:

jo

Ok Lancel Help Apply

Type
The type of permutation table that the block uses for interleaving.

Number of elements
The number of elements, N, in the input vector.

Multiplicative factor
The factor used to compute the interleaver’s cycle vector. This
field appears only if Type is set to Takeshita-Costello.

Cyeclic shift
The amount by which the block shifts indices when creating
the permutation table. This field appears only if Type is set to
Takeshita-Costello.

2-10

Algebraic Interleaver

Pair Block
See Also

References

Primitive element
An element of order N in the finite field GF(N+1). This field
appears only if Type is set to Welch-Costas.

Algebraic Deinterleaver
General Block Interleaver

[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston:
Kluwer Academic Publishers, 1999.

[2] Takeshita, O. Y. and D. J. Costello, Jr. "New Classes Of Algebraic

Interleavers for Turbo-Codes." Proc. 1998 IEEE International
Symposium on Information Theory, Boston, Aug. 16-21, 1998. 419.

2-11

Align Signals

Purpose Align two signals by finding delay between them
Library Utility Blocks
Description The Align Signals block aligns a signal with a delayed, and possibly
distorted, version of itself. The block is particularly useful when you
S algn d: want to compare a transmitted and received signal to find the bit error
2 Sanalg rate, but do not know the delay in the received signal.
Align Signals

The input port labeled s1 receives the original signal, while the input
port labeled s2 receives the delayed version of the signal. The two input
signals must have the same sample times. The block calculates the
delay between the two signal, and then

® Delays the first signal, s1, by the calculated value, and outputs it
through the port labeled s1 del.

® Qutputs the second signal s2 without change through the port
labeled s2.

® Qutputs the delay value through the port labeled delay.

See “Computing Delays” in the Communications Blockset online
documentation for more information about signal delays.

The block’s Correlation window length parameter specifies

how many samples of the signals the block uses to calculate the
cross-correlation. The delay output is a nonnegative integer less than
the Correlation window length.

As the Correlation window length is increased, the reliability of
the computed delay also increases. However, the processing time to
compute the delay increases as well.

You can make the Align Signals block stop updating the delay after it
computes the same delay value for a specified number of samples. To
do so, select the Disable recurring updates check box, and enter a
positive integer in the Number of constant delay outputs to disable
updates field. For example, if you set Number of constant delay
outputs to disable updates to 20, the block will stop recalculating

2-12

Align Signals

and updating the delay after it calculates the same value 20 times in
succession. Disabling recurring updates causes the simulation to run
faster after the target number of constant delays occurs.

Tips for Using the Block Effectively

® Set the Correlation window length parameter sufficiently large so
that the computed delay eventually stabilizes at a constant value. If
the computed delay is not constant, you should increase Correlation
window length. If the increased value of Correlation window
length exceeds the duration of the simulation, then you should also
increase the duration of the simulation accordingly.

e If the cross-correlation between the two signals is broad, then
Correlation window length should be much larger than the
expected delay, or else the algorithm might stabilize at an incorrect
value. For example, a CPM signal has a broad autocorrelation, so it
has a broad cross-correlation with a delayed version of itself. In this
case, the Correlation window length value should be much larger
than the expected delay.

¢ If the block calculates a delay that is greater than 75 percent of
Correlation window length, the signal s1 is probably delayed
relative to the signal s2. In this case, you should switch the signal
lines leading into the two input ports.

¢ If you use the Align Signals block with the Error Rate Calculation
block, you should set the Receive delay parameter of the Error Rate
Calculation block to 0 because the Align Signals block compensates
for the delay. Also, you might want to set the Error Rate Calculation
block’s Computation delay parameter to a nonzero value to account
for the possibility that the Align Signals block takes a nonzero
amount of time to stabilize on the correct amount by which to delay
one of the signals.

Examples See the“Computing Delays” section of Using the Communications
Blockset for an example that uses the Align Signals block in conjunction
with the Error Rate Calculation block.

2-13

Align Signals

See “Setting the Correlation Window Length” on page 2-185, on the
reference page for the Find Delay block, for an example that illustrates
how to set the correlation window length properly.

.
DIG IOg E! Function Block Parameters: Align Signals ll
Box —&lign Signals [mask)

Align bwo gignals £1 and £2 by finding the delay between them uzing cross-cormelation
techniques, then by delaying =1 by the computed delay. The input signal 2 should be
delayed relative to the input =1, or else the computed delay will be incarect, and the
zignalz will not be properly aligned.

=

Corelation window length [zamples]:

I~ Dizable recuring updates

Cancel | Help | Apply

Correlation window length
The number of samples the block uses to calculate the
cross-correlations of the two signals.

Disable recurring updates
Selecting this option causes the block to stop computing the delay
after it computes the same delay value for a specified number
of samples.

Number of constant delay outputs to disable updates
A positive integer specifying how many times the block must
compute the same delay before ceasing to update. This field
appears only if Disable recurring updates is selected.

Algorithm The Align Signals block finds the delay by calculating the
cross-correlations of the first signal with time-shifted versions of the
second signal, and then finding the index at which the cross-correlation
is maximized.

See Also Find Delay, Error Rate Calculation

2-14

APP Decoder

Purpose

Library

Description

Liu)

8]

APP Decoder

L{u)

L

Decode convolutional code using a posteriori probability (APP) method
Convolutional sublibrary of Channel Coding

The APP Decoder block performs a posteriori probability (APP) decoding
of a convolutional code.

Inputs and Outputs

The input L(u) represents the sequence of log-likelihoods of encoder
input bits, while the input L(c) represents the sequence of log-likelihoods
of code bits. The outputs L(u) and L(c) are updated versions of these
sequences, based on information about the encoder.

If the convolutional code uses an alphabet of 2" possible symbols,

this block’s L(c) vectors have length Q*n for some positive integer Q.
Similarly, if the decoded data uses an alphabet of 2* possible output
symbols, then this block’s L(u) vectors have length Q*k. The integer Q
is the number of frames that the block processes in each step.

The inputs can be either

® Sample-based vectors having the same dimension and orientation,
with Q =1

® Frame-based column vectors with any positive integer for Q

If you only need the input L(c) and output L(u), you can attach a

Simulink Ground block to the input L(u) and a Simulink Terminator
block to the output L(c).

This block accepts single and double data types. Both inputs, however,
must be of the same type. The output data type is the same as the
input data type.

Specifying the Encoder

To define the convolutional encoder that produced the coded input,
use the Trellis structure parameter. This parameter is a MATLAB
structure whose format is described in “Trellis Description of a

2-15

APP Decoder

2-16

Convolutional Encoder” in the Communications Toolbox documentation.
You can use this parameter field in two ways:

¢ Ifyou have a variable in the MATLAB workspace that contains the
trellis structure, enter its name as the Trellis structure parameter.
This way is preferable because it causes Simulink® to spend less time
updating the diagram at the beginning of each simulation, compared
to the usage described next.

¢ If you want to specify the encoder using its constraint length,
generator polynomials, and possibly feedback connection polynomials,
use a poly2trellis command within the Trellis structure field.
For example, to use an encoder with a constraint length of 7, code
generator polynomials of 171 and 133 (in octal numbers), and a
feedback connection of 171 (in octal), set the Trellis structure
parameter to

poly2trellis(7,[171 133],171)

To indicate how the encoder treats the trellis at the beginning and
end of each frame, set the Termination method parameter to either
Truncated or Terminated. The Truncated option indicates that the
encoder resets to the all-zeros state at the beginning of each frame. The
Terminated option indicates that the encoder forces the trellis to end
each frame in the all-zeros state. If you use the Convolutional Encoder
block with the Operation mode parameter set to Truncated (reset
every frame), use the Truncated option in this block. If you use the
Convolutional Encoder block with the Operation mode parameter set
to Terminate trellis by appending tail bits, use the Terminated
option in this block.

Specifying Details of the Algorithm

You can control part of the decoding algorithm using the Algorithm
parameter. The True APP option implements a posteriori probability. To
gain speed, both the Max* and Max options approximate expressions like

APP Decoder

Dialog
Box

log Z exp(a;)
i

by other quantities. The Max option uses max{a,;} as the approximation,
while the Max* option uses max{a,} plus a correction term.

The Max* option enables the Scaling bits parameter in the dialog
box. This parameter is the number of bits by which the block scales
the data it processes internally. Use this parameter to avoid losing
precision during the computations. It is especially appropriate if your
implementation uses fixed-point components. For more information
about the Max* option, see the article by Viterbi in References.

=) Block Parameters: APP Decoder 2xl

—&PP Decoder [mask)

A posterion probability [APP) decoder. Use the poly2trellis function to create a trellis
uzing the constraint length, code generator [octal), and feedback connection [octal).

=
F

Trellis structure:

Termination method: I Truncated j
Algorithim: I LT LI
Mumber of zzaling bits:
3

Ok | Lancel Help Apply

Trellis structure

MATLAB structure that contains the trellis description of the
convolutional encoder.

Termination method

Either Truncated or Terminated. This parameter indicates how
the convolutional encoder treats the trellis at the beginning and
end of frames.

Algorithm

Either True APP, Max*, or Max.

2-17

APP Decoder

Number of scaling bits
An integer between 0 and 8 that indicates by how many bits the
decoder scales data in order to avoid losing precision. This field is
active only when Algorithm is set to Max*.

See Also Viterbi Decoder, Convolutional Encoder; poly2trellis
(Communications Toolbox)

References [1] Benedetto, Sergio and Guido Montorsi, “Performance of Continuous
and Blockwise Decoded Turbo Codes.” IEEE Communications Letters,
Vol. 1, May 1997, 77-79.

[2] Benedetto, S., G. Montorsi, D. Divsalar, and F. Pollara, “A Soft-Input
Soft-Output Maximum A Posterior (MAP) Module to Decode Parallel
and Serial Concatenated Codes,” JPL TDA Progress Report, Vol.
42-127, November 1996. [This electronic journal is available at
http://tmo.jpl.nasa.gov/tmo/progress_report/index.html.]

[3] Viterbi, Andrew J., “An Intuitive Justification and a Simplified
Implementation of the MAP Decoder for Convolutional Codes,” IEEE
Journal on Selected Areas in Communications, Vol. 16, February 1998,
260-264.

2-18

AWGN Channel

Purpose
Library

Description

AUGN

Add white Gaussian noise to input signal
Channels

The AWGN Channel block adds white Gaussian noise to a real or
complex input signal. When the input signal is real, this block adds
real Gaussian noise and produces a real output signal. When the input
signal is complex, this block adds complex Gaussian noise and produces
a complex output signal. This block inherits its sample time from the
input signal.

This block uses the Signal Processing Blockset’s Random Source block to
generate the noise. The Initial seed parameter in this block initializes
the noise generator. Initial seed can be either a scalar or a vector
whose length matches the number of channels in the input signal. For
details on Initial seed, see the Random Source block reference page in
the Signal Processing Blockset documentation set.

The signal inputs can only be of type single or double. The port data
types are inherited from the signals that drive the block.

Frame-Based Processing and Input Dimensions

This block can process multichannel signals that are frame-based or
sample-based. The guidelines below indicate how the block interprets
your data, depending on the data’s shape and frame status:

® If your input is a sample-based scalar, then the block adds scalar
Gaussian noise to your signal.

® If your input is a sample-based vector or a frame-based row vector,
then the block adds independent Gaussian noise to each channel.

e If your input is a frame-based column vector, then the block adds a
frame of Gaussian noise to your single-channel signal.

® If your input is a frame-based m-by-n matrix, then the block adds
a length-m frame of Gaussian noise independently to each of the
n channels.

2-19

AWGN Channel

The input cannot be a sample-based m-by-n matrix if both m and n
are greater than 1.

Specifying the Variance Directly or Indirectly
You can specify the variance of the noise generated by the AWGN
Channel block using one of these modes:
® Signal to noise ratio (Eb/No), where the block calculates the
variance from these quantities that you specify in the dialog box:
= EDb/No, the ratio of bit energy to noise power spectral density
= Number of bits per symbol
= Input signal power, the power of the input symbols
= Symbol period

® Signal to noise ratio (Es/No), where the block calculates the
variance from these quantities that you specify in the dialog box:

= Es/No, the ratio of signal energy to noise power spectral density
= Input signal power, the power of the input symbols
= Symbol period

® Signal to noise ratio (SNR), where the block calculates the
variance from these quantities that you specify in the dialog box:

= SNR, the ratio of signal power to noise power
= Input signal power, the power of the input samples

® Variance from mask, where you specify the variance in the dialog
box. The value must be positive.

e Variance from port, where you provide the variance as an input
to the block. The variance input must be positive, and its sampling
rate must equal that of the input signal. If the first input signal
is sample-based, then the variance input must be sample-based. If
the first input signal is frame-based, then the variance input can be
either frame-based with exactly one row, or sample-based.

2-20

AWGN Channel

Changing the symbol period in the AWGN Channel block affects the
variance of the noise added per sample, which also causes a change in
the final error rate.

SignalPower x SymbolPeriod
Es/ No

SampleTimex10 10

NoiseVariance =

A good rule of thumb for selecting the Symbol period value is to
set it to be what you model as the symbol period in the model. The
value would depend upon what constitutes a symbol and what the
oversampling applied to it is (e.g., a symbol could have 3 bits and be
oversampled by 4).

In both Variance from mask mode and Variance from port mode,
these rules describe how the block interprets the variance:

¢ Ifthe variance is a scalar, then all signal channels are uncorrelated
but share the same variance.

¢ Ifthe variance is a vector whose length is the number of channels in
the input signal, then each element represents the variance of the
corresponding signal channel.

Note If you apply complex input signals to the AWGN Channel block,
then it adds complex zero-mean Gaussian noise with the calculated
or specified variance. The variance of each of the quadrature
components of the complex noise is half of the calculated or specified
value.

Relationship Among Eb/No, Es/No, and SNR Modes
For complex input signals, the AWGN Channel block relates E /N
E/N,, and SNR according to the following equations:

E/N, = (T, /T

sym’ = samp

) - SNR

2-21

AWGN Channel

2-22

E/N, = E/N, + 10log,,(k) in dB
where

¢ E_ = Signal energy (Joules)

E, = Bit energy (Joules)
® N, = Noise power spectral density (Watts/Hz)

T, is the Symbol period parameter of the block in Es/No mode

k is the number of information bits per input symbol

® T, is the inherited sample time of the block, in seconds
For real signal inputs, the AWGN Channel block relates E/N;and SNR
according to the following equation:

E/N,=05 (T /T . ..) - SNR
Note that the equation for the real case differs from the corresponding
equation for the complex case by a factor of 2. This is so because the

block uses a noise power spectral density of N /2 Watts/Hz for real input
signals, versus N, Watts/Hz for complex signals.

For more information about these quantities, see “Describing the
Noise Level of an AWGN Channel” in the Communications Toolbox
documentation.

Tuning Parameters in an RSim Executable (Real-Time Workshop)

If you use the Real-Time Workshop® rapid simulation (RSim) target
to build an RSim executable, then you can tune selected parameters
without recompiling the model. This is useful for Monte Carlo
simulations in which you run the simulation multiple times (perhaps
on multiple computers) with different amounts of noise. The table
below indicates, for different modes of the block, which parameters
are tunable.

AWGN Channel

Mode Tunable Parameters

Eb/No Eb/No, Input signal power
Es/No Es/No, Input signal power
SNR SNR, Input signal power
Variance from mask Variance

EBlock Parameters: AWGN Channel 2=l

—&W0GEN Channel [mask)

Add white Gauzzian noize to the input gsignal. The input and output signals can be
real or complex. Thiz block supports multichannel input and output signals az well az
frame-bazed processing.

‘when using either of the variance modes with complex inputs, the variance values
are equally divided among the real and imaginary components of the input zsignal.

=

Initial seed:

Mode: I Signal to noize ratio [Eb/Ma] LI
Eb/MNo [dB:

J10

Mumber of bits per symbal:

Jh

Input gignal power [wattz]:

Jh

Symbol period [z]:

Jh

Ok | Lancel Help Apply

Dialog
Box

Initial seed
The seed for the Gaussian noise generator.

Mode
The mode by which you specify the noise variance: Signal to
noise ratio (Eb/No), Signal to noise ratio (Es/No),
Signal to noise ratio (SNR), Variance from mask, or
Variance from port.

2-23

AWGN Channel

2-24

Examples

Eb/No (dB)
The ratio of bit energy per symbol to noise power spectral density,
in decibels. This field appears only if Mode is set to Eb/No.

Es/No (dB)
The ratio of signal energy per symbol to noise power spectral
density, in decibels. This field appears only if Mode is set to
Es/No.

SNR (dB)
The ratio of signal power to noise power, in decibels. This field
appears only if Mode is set to SNR.

Number of bits per symbol
The number of bits in each input symbol. This field appears only
if Mode is set to Eb/No.

Input signal power (watts)
The root mean square power of the input symbols (if Mode is
Eb/No or Es/No) or input samples (if Mode is SNR), in watts. This
field appears only if Mode is set to Eb/No, Es/No, or SNR.

Symbol period (s)
The duration of a channel symbol, in seconds. This field appears
only if Mode is set to Eb/No or Es/No.

Variance
The variance of the white Gaussian noise. This field appears only
if Mode is set to Variance from mask.

Many demonstration models and documentation examples use this
block, including:

(EbNo mode)
(EsNo mode)

“Building a Frequency-Shift Keying Model” (EsNo mode)

“Example: Using Raised Cosine Filters” (SNR mode)

e (Variance from mask mode)

AWGN Channel
|

See Also Random Source (Signal Processing Blockset)
Reference [1] Proakis, John G., Digital Communications, 4th Ed., McGraw-Hill,
2001.

2-25

Barker Code Generator

Purpose
Library

Description

Barter Code
Generator

2-26

Generate Barker Code
Sequence Generators sublibrary of Comm Sources

Barker codes, which are subsets of PN sequences, are commonly used
for frame synchronization in digital communication systems. Barker
codes have length at most 13 and have low correlation sidelobes. A
correlation sidelobe is the correlation of a codeword with a time-shifted
version of itself. The correlation sidelobe, C,, for a k-symbol shift of an
N-bit code sequence, {)%}, is given by

N-k
Cp, = z XX
j=1

where X, is an individual code symbol taking values +1 or -1 for
j=1, 2, 3,..., N, and the adjacent symbols are assumed to be zero.

The Barker Code Generator block provides the codes listed in the
following table:

Code
length Barker Code

1 [-1]

[-11];

[-1 -1 1]

[-1 -1 1 -1]

[IS ASH|

N o[~ O |DN

[-1 -1 -1 11 -11]

11 [-1 -1 -1 111 -111-11]

13 (=1 =1 =1 =0 =0 1 1 =9 =0 1 =1 1 =]

Barker Code Generator

Dialog
Box

See Also

E! Source Block Parameters: Barker Cod x|

—Barker Code Generator [maszk] [link]

Generate a Barker Code of the specified length.

The output code iz in a bi-polar format with a {0, 13 to {1, -1} element
mapping.

Codt ot EANRRGG—G—GEGEG——— |
Sample time:

Ji

[~ Frame-based cutputs
Samples per frame:

Ji

Output data type: I double LI

ok I Cancel | Help |

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Code length
The length of the Barker code.

Sample time
Period of each element of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field
is active only if you select the Frame-based outputs check box.

Output data type
The output type of the block can be specified as an int8 or double.
By default, the block sets this to double.

PN Sequence Generator

2-27

Baseband PLL

Purpose Implement baseband phase-locked loop
Librclry Components sublibrary of Synchronization

Description The Baseband PLL (phase-locked loop) block is a feedback control
system that automatically adjusts the phase of a locally generated
Basebang T signal to match the phase of an input signal. Unlike thePhase-Locked
PLL D Loop block, this block uses a baseband method and does not depend on

wEo .
a carrier frequency.

This PLL has these three components:

* An integrator used as a phase detector.

* A filter. You specify the filter’s transfer function using the Lowpass
filter numerator and Lowpass filter denominator parameters.
Each is a vector that gives the respective polynomial’s coefficients in
order of descending powers of s.

To design a filter, you can use functions such as butter, cheby1,
and cheby?2 in the Signal Processing Toolbox. The default filter is
a Chebyshev type II filter whose transfer function arises from the
command below.

[num, den] = cheby2(3,40,100,'s")

® A voltage-controlled oscillator (VCO). You specify the sensitivity
of the VCO signal to its input using the VCO input sensitivity
parameter. This parameter, measured in Hertz per volt, is a scale
factor that determines how much the VCO shifts from its quiescent
frequency.

The input signal represents the received signal. The input must be a
sample-based scalar signal. The three output ports produce:

® The output of the filter
® The output of the phase detector
® The output of the VCO

2-28

Baseband PLL

Dialog
Box

See Also

References

This model is nonlinear; for a linearized version, use theLinearized
Baseband PLL block.

E1Block Parameters: Baseband PLL | 2=l
—Baszeband PLL [mask)

Implement a bageband model of a phasze-locked loop. The three outputs are the
outputs of the lowpassz filker, the phaze detector, and the voltage controlled oscillator
[VCO). The input must be & sample-bazed scalar signal.

=
F

Lowpazs filker numeratar:
3.0002 0 40002

Lowpass filker denominator:
I[‘I E7.46 2270.9 40002]

WO input sensitivity [Hz)

Jh

Ok | Lancel | Help Apply

Lowpass filter numerator

The numerator of the lowpass filter’s transfer function,
represented as a vector that lists the coefficients in order of

descending powers of s.
Lowpass filter denominator

The denominator of the lowpass filter’s transfer function,

represented as a vector that lists the coefficients in order of
descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the

shift from the VCO’s quiescent frequency.
Linearized Baseband PLL, Phase-Locked Loop

For more information about phase-locked loops, see the works

listed in “Selected Bibliography for Synchronization” in Using the
Communications Blockset.

2-29

BCH Decoder

2-30

Purpose
Library

Description

g-.::;-\g

BCH Decoder

Decode BCH code to recover binary vector data
Block sublibrary of Channel Coding

The BCH Decoder block recovers a binary message vector from a binary
BCH codeword vector. For proper decoding, the first two parameter
values in this block should match the parameters in the corresponding
BCH Encoder block.

The input is the binary codeword vector, and the first output is the
corresponding binary message vector. If the BCH code has message
length K and codeword length N, then the input has length N and the
first output has length K. If the input is frame-based, then it must be a
column vector.

For a given codeword length N, only specific message lengths K are
valid for a BCH code. For a full length BCH code, N must be of the

form 2-1, where 3 < M <16. If N is less than 2-1, the block uses a
shortened BCH code.

No known analytic formula describes the relationship among the
codeword length, message length, and error-correction capability. For
a list of some valid values of K corresponding to values of N up to
511, see the bchenc reference page in the Communications Toolbox
documentation.

To have the block output error information, select Output number of
corrected errors. Selecting this option causes a second output port
to appear. The second output is the number of errors detected during
decoding of the codeword. A negative integer indicates that the block
detected more errors than it could correct using the coding scheme.

The sample times of all input and output signals are equal.

This block supports double and boolean data types.

BCH Decoder

Dialog
Box

Pair Block

IFunction Block Parameters: BCH Decoder x|

—BCH Decoder [mask] [link]

Decode the meszage in the input vector uging an [M.K] BCH decoder with the
narow-senze generator polpnomial. The input must be a frame-bazed column vector
with an integer multiple of M elements. Each group of M input elements represents
one codeword to be decoded. The values of M and K. must produce a valid
hamow-senze BCH code.

If log2[M+1] does nat equal M, where 3<=k<=1E, then a shortened code iz assumed.
The shartening length iz 2 ceilllog2(M+1]] - (N+1].

Codeword length, M:
Message length, K:
|

[~ Output number of conected erors

QK I Cancel | Help | Apply |

Codeword length, N
The codeword length, which is also the vector length of the first
input.

Message length, K
The message length, which is also the vector length of the first
output.

Output number of corrected errors
Selecting this check box gives the block an additional output port,
which indicates the number of errors the block detected in the
input codeword.

BCH Encoder

2-31

BCH Encoder

Purpose Create BCH code from binary vector data
Librclry Block sublibrary of Channel Coding

Description The BCH Encoder block creates a BCH code with message length K and
codeword length N. You specify both N and K directly in the dialog box.

E=::-E
BCH Encoder The input must contain exactly K elements. If it is frame-based, then it

must be a column vector. The output is a vector of length V.

For a given codeword length N, only specific message lengths K are
valid for a BCH code. For a full length BCH code, N must be of the form

2M_1, where 3< M <16. If N is less than 2-1, the block assumes a
shortened BCH code.

No known analytic formula describes the relationship among the
codeword length, message length, and error-correction capability. For
a list of some valid values of K corresponding to values of N up to
511, see the bchenc reference page in the Communications Toolbox
documentation.

This block supports double and boolean data types.

.
DIG IOg E! Function Block Parameters: BCH Encoder x|
Box —BCH Encoder [mask] [link]

Encode the mezzage in the input vector uging an [M.E] BCH encoder with the
narow-senze generator polpnomial. The input must be a frame-bazed column vector

with an integer multiple of K. elements. Each group of K input elements represents
one meszage word to be encoded. The walues of M and K must produce a valid
hamow-senze BCH code.

If log2[M+1] does nat equal M, where 3<=k<=1E, then a shortened code iz assumed.
The shartening length iz 2 ceilllog2(M+1]] - (N+1].

=
F

Codeword length, M:
Message length, K:
|5

QK I Cancel Help Apply

2-32

BCH Encoder
|

Codeword length, N
The codeword length, which is also the output vector length.

Message length, K
The message length, which is also the input vector length.

Pair Block BCH Decoder

See Also bchenc (Communications Toolbox)

2-33

Bernoulli Binary Generator

2-34

Purpose
Library

Description

Bermnoulli bin

Generate Bernoulli-distributed random binary numbers
Random Data Sources sublibrary of Comm Sources

The Bernoulli Binary Generator block generates random binary
numbers using a Bernoulli distribution. The Bernoulli distribution with
parameter p produces zero with probability p and one with probability
1-p. The Bernoulli distribution has mean value 1-p and variance p(1-p).
The Probability of a zero parameter specifies p, and can be any real
number between zero and one.

Attributes of Output Signal

The output signal can be a frame-based matrix, a sample-based row
or column vector, or a sample-based one-dimensional array. These
attributes are controlled by the Frame-based outputs, Samples
per frame, and Interpret vector parameters as 1-D parameters.
See “Signal Attribute Parameters for Random Sources” in Using the
Communications Blockset for more details.

The number of elements in the Initial seed and Probability of a zero
parameters becomes the number of columns in a frame-based output
or the number of elements in a sample-based vector output. Also, the
shape (row or column) of the Initial seed and Probability of a zero
parameters becomes the shape of a sample-based two-dimensional
output signal.

Bernoulli Binary Generator

Dialog
Box

E)5ource Block Parameters: Bernoulli B x|

—Bemoulli Binary Generator [mask)] [link]

Generate a Bermoulli random binary number.
To generate a vector output, specify the probability as a vector.

Probability of & zero:
Jog

Initial seed:

61

Sample time:

Jh

™ Frame-bazed outputs

Samples per frame:
Jh
™ Interpret vector parameters as 1-0

Output data type: | double LI

ok I Lancel | Help |

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Probability of a zero
The probability with which a zero output occurs.

Initial seed
The initial seed value for the random number generator. The seed
can be either a vector of the same length as the Probability of
a zero parameter, or a scalar.

Sample time
The period of each sample-based vector or each row of a
frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based.
This box is active only if Interpret vector parameters as 1-D
is unchecked.

2-35

Bernoulli Binary Generator

2-36

See Also

Samples per frame
The number of samples in each column of a frame-based output
signal. This field is active only if Frame-based outputs is
checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is
active only if Frame-based outputs is unchecked.

Output data type
The output type of the block can be specified as a boolean, int8,
uint8, int16, uint16, int32, uint32, single, or double. By
default, the block sets this to double. Single outputs may lead
to different results when compared with double outputs for the
same set of parameters.

Random Integer Generator, Binary Symmetric Channel; randint
(Communications Toolbox), rand (built-in MATLAB function)

Binary Cyclic Decoder

Purpose
Library

Description
B——B

Cyelic Decoder

Decode systematic cyclic code to recover binary vector data
Block sublibrary of Channel Coding

The Binary Cyclic Decoder block recovers a message vector from

a codeword vector of a binary systematic cyclic code. For proper
decoding, the parameter values in this block should match those in the
correspondingBinary Cyclic Encoder block.

If the cyclic code has message length K and codeword length N, then N
must have the form 2M-1 for some integer M greater than or equal to 3.

The input must contain exactly N elements. If it is frame-based, then it
must be a column vector. The output is a vector of length K.

You can determine the systematic cyclic coding scheme in one of two
ways:

® To create an [N,K] code, enter N and K as the first and second
dialog parameters, respectively. The block computes an appropriate
generator polynomial, namely, cyclpoly (N,K, 'min').

® To create a code with codeword length N and a particular
degree-(N-K) binary generator polynomial, enter N as the first
parameter and a binary vector as the second parameter. The vector
represents the generator polynomial by listing its coefficients in order
of ascending exponents. You can create cyclic generator polynomials
using the cyclpoly function in the Communications Toolbox.

This block supports double and boolean data types.

2-37

Binary Cyclic Decoder

L]
Dla Iog E1Block Parameters: Binary Cyclic Decoder 2=l
Box —Binary Cyclic Decoder [mask]
Fecover a meszage vector from a codeword vector of a binary spstematic cyclic
code. The message iz of length K. and the codeword iz of length M, where M hasz the
farm 2°M-1, for some integer M greater than or equal to 3.
The input must contain exactly M elements. If it is frame-baged, then it must be a
columh vechar.
-

Codeword length M:

[

Message length K., or generator polynamial:

J4

Ok | Lancel | Help Apply

Codeword length N
The codeword length N, which is also the input vector length.

Message length K, or generator polynomial
Either the message length, which is also the output vector length;

or a binary vector that represents the generator polynomial for

the code.

Pair Block Binary Cyclic Encoder

See Also cyclpoly (Communications Toolbox)

2-38

Binary Cyclic Encoder

Purpose
Library

Description

B—H

Cyclic Encoder

Create systematic cyclic code from binary vector data
Block sublibrary of Channel Coding

The Binary Cyclic Encoder block creates a systematic cyclic code with
message length K and codeword length N. The number N must have the
form 2M-1, where M is an integer greater than or equal to 3.

The input must contain exactly K elements. If it is frame-based, then it
must be a column vector. The output is a vector of length N.

You can determine the systematic cyclic coding scheme in one of two
ways:

® To create an [N,K] code, enter N and K as the first and second
dialog parameters, respectively. The block computes an appropriate
generator polynomial, namely, cyclpoly (N,K, 'min').

® To create a code with codeword length N and a particular
degree-(N-K) binary generator polynomial, enter N as the first
parameter and a binary vector as the second parameter. The vector
represents the generator polynomial by listing its coefficients in order
of ascending exponents. You can create cyclic generator polynomials
using the cyclpoly function in the Communications Toolbox.

This block supports double and boolean data types.

2-39

Binary Cyclic Encoder

21|

L]
Dla Iog EBlock Parameters: Binary Cyclic Encoder
Box —Binary Cyclic Encoder [mask)
Create a spstematic cyclic code with meszage length K. and codeword length M. The
numnber M must have the form 2°M-1, where M is an integer greater than or equal to
The input must contain exactly K elements. |F it iz frame-based, then it must be a
columh vechar.

=
F

Codeword length M:

]

Message length K. or generator polynomial:
J4

Ok | Lancel | Help Apply

Codeword length N
The codeword length, which is also the output vector length.

Message length K, or generator polynomial

Either the message length, which is also the input vector length;
or a binary vector that represents the generator polynomial for

the code.
Pair Block Binary Cyclic Decoder

See Also cyclpoly (Communications Toolbox)

2-40

Binary-Input RS Encoder

Purpose
Library

Description

Binany Inpu[

RS Encoder

Create Reed-Solomon code from binary vector data
Block sublibrary of Channel Coding

The Binary-Input RS Encoder block creates a Reed-Solomon code with
message length K and codeword length N. You specify both N and K
directly in the dialog box. The symbols for the code are binary sequences
of length M, corresponding to elements of the Galois field GF(2M), where
the first bit in each sequence is the most significant bit. Restrictions on
M and N are given in “Restrictions on the M and the Codeword Length
N” on page 2-42 below. The difference N-K must be an even integer.

The input and output are binary-valued signals that represent messages
and codewords, respectively. The input must be a frame-based column
vector whose length is an integer multiple of M*K. The block can accept
the data types int8, uint8, int16, uint16, int32, uint32, single, and
double. The output is a frame-based column vector whose length is the
same integer multiple of M*N, and whose data type is inherited from
the input. For more information on representing data for Reed-Solomon
codes, see the section “Integer Format (Reed-Solomon Only)” in Using
the Communications Blockset.

The default value of M is the smallest integer that is greater than or
equal to log2(N+1), that is, ceil(1log2(N+1)). You can change the value
of M from the default by specifying the primitive polynomial for GF(2M),
as described in “Specifying the Primitive Polynomial” on page 2-42
below. If N is less than 2M-1, the block uses a shortened Reed-Solomon
code.

Each M*K input bits represent K integers between 0 and 2M-1.
Similarly, each M*N output bits represent N integers between 0 and
2M.1. These integers in turn represent elements of the Galois field
GF(2M).

An (N,K) Reed-Solomon code can correct up to floor((N-K)/2) symbol
errors (not bit errors) in each codeword.

2-41

Binary-Input RS Encoder

2-42

Specifying the Primitive Polynomial

You can specify the primitive polynomial that defines the finite

field GF(2M), corresponding to the integers that form messages and
codewords. To do so, first select Specify primitive polynomial. Then,
set Primitive polynomial to a binary row vector that represents a
primitive polynomial over GF(2) of degree M, in descending order of
powers. For example, to specify the polynomial x*+x+1, enter the vector
[1 01 1].

If you do not select Specify primitive polynomial, the

block uses the default primitive polynomial of degree M =
ceil(log2(N+1)). You can display the default polynomial by entering
primpoly(ceil(log2(N+1))) at the MATLAB prompt.

Restrictions on the M and the Codeword Length N

The restrictions on the degree M of the primitive polynomial and the
codeword length N are as follows:

¢ If you do not select Specify primitive polynomial, N must lie in
the range 3 < N < 2161,

® Ifyou do select Specify primitive polynomial, N must lie in the
range 3 <N < 21-1 and M must lie in the range 3 <M < 16.

Specifying the Generator Polynomial

You can specify the generator polynomial for the Reed-Solomon code.
To do so, first select Specify generator polynomial. Then, in the
Generator polynomial field, enter an integer row vector whose
entries are between 0 and 2M-1. The vector represents a polynomial,

in descending order of powers, whose coefficients are elements of
GF(2M) represented in integer format. See the section“Integer Format
(Reed-Solomon Only)” for more information about integer format. The
generator polynomial must be equal to a polynomial with a factored form

g(x) = (x+AD)(x+AP) (x-+AP*2). . (x+APNED)

Binary-Input RS Encoder

Examples

where A is the primitive element of the Galois field over which the input
message is defined, and b is a non-negative integer.

If you do not select Specify generator polynomial, the block uses the
default generator polynomial, corresponding to b=1, for Reed-Solomon
encoding. You can display the default generator polynomial by
entering rsgenpoly (N1,K1), where N1=2"M-1 and K1=K+(N1-N), at the
MATLAB prompt, if you are using the default primitive polynomial. If
the Specify primitive polynomial box is selected, and you specify
the primitive polynomial specified as poly, the default generator
polynomial is rsgenpoly (N1,K1,poly).

Suppose M = 3, N = 23-1 =7, and K = 5. Then a message is a binary
vector of length 15 that represents 5 three-bit integers. A corresponding
codeword is a binary vector of length 21 that represents 7 three-bit
integers. The following figure shows the codeword that would result
from a particular message word. The integer format equivalents
illustrate that the highest order bit is at the left.

Message input: [0111110010000°01] [37101]

) in integer format
Binary-Input RS Encoder

withN=7,K=5

Codeoutput: [0 1T 11 1100100000101 10°1T1] [3710133]
in integer format

2-43

Binary-Input RS Encoder

L]
DIO Iog = Function Block Parameters: Binary-Input RS En x|
Box —Binary-Input RS Encoder [maszk] [link]
Encode the message in the input vector using an [M.K] Reed-5olomon encoder with
the narrow-gense generator polynomial. The input must be a frame-based column
wector with an integer multiple of K*ceilllog2(M+1]) bits. Each group of K ceillog2
[M+1]] input bits reprezents one message word to be encoded.

The optional ‘Primitive polynomial' parameter iz a row vector that reprezents the binary
coefficients of the primitive polynomial in order of descending powers. ‘When such a
uger-defined Primitive polynomial is provided, the number of input bits must be an
integer multiple of K times the order of the Primitive polynomial instead.

The optional 'Generator polynomial' parameter iz a row vector that reprezents the
coefficients of the generator polynomial in order of descending powers. Each
coefficient iz an element of the Galoiz field defined by the primitive polynomial.

Codeword length M:
@
Meszage length K:

E]

[~ Specify primitive polynarnial

Frimitive polynomial:
Jroti)
[~ Specify generator polynarnial

Generator polynomial:

Jrsgenpoly(? 3]

Output data type: I double LI

QK I Cancel | Help | Apply |

Codeword length N
The codeword length. The output has vector length M*N.

Message length K
The message length. The input has vector length M*K.

Specify primitive polynomial
When you select this box, you can specify the primitive polynomial
as a binary row vector.

Primitive polynomial
Binary row vector representing the primitive polynomial in
descending order of powers.

2-44

Binary-Input RS Encoder

Pair Block
See Also

Specify generator polynomial
When you select this box, you can specify the generator polynomial
as an integer row vector.

Generator polynomial
Integer row vector, whose entries are in the range from 0 to 2M-1,
representing the generator polynomial in descending order of
powers.

Output data type
The output type of the block can be specified as a boolean or
double. By default, the block sets this to double.

Binary-Output RS Decoder

Integer-Input RS Encoder

2-45

Binary Linear Decoder

2-46

Purpose
Library

Description

E:::E

Linear Drecoder

Decode linear block code to recover binary vector data
Block sublibrary of Channel Coding

The Binary Linear Decoder block recovers a binary message vector from
a binary codeword vector of a linear block code.

The Generator matrix parameter is the generator matrix for the block
code. For proper decoding, this should match the Generator matrix
parameter in the correspondingBinary Linear Encoder block. If N is the
codeword length of the code, then Generator matrix must have N
columns. If K is the message length of the code, then the Generator
matrix parameter must have K rows.

The input must contain exactly N elements. If it is frame-based, then it
must be a column vector. The output is a vector of length K.

The decoder tries to correct errors, using the Decoding table
parameter. If Decoding table is the scalar 0, then the block defaults to
the table produced by the Communications Toolbox function syndtable.
Otherwise, Decoding table must be a 2N-K-by-N binary matrix. The rth
row of this matrix is the correction vector for a received binary codeword
whose syndrome has decimal integer value r-1. The syndrome of a
received codeword is its product with the transpose of the parity-check
matrix.

This block supports double and boolean data types.

Binary Linear Decoder

L]
DIG IOg E! Block Parameters: Binary Linear Decoder 2=l
Box —Binary Linear Decoder [mask)

Fecover a binary message vector from a binary codeword vector of a linear block
code. The message iz of length K. and the codeword iz of length M, where K and M
are the number of rows and columnz of the generator matrix respectively. The
nurnber M must have the form 2°M-1, for some integer M greater than or equal to 3.

The decoder assumes that the encoder's generator matrix has the standard
systematic form [P 1], In other words, the input codewaords must contain parity-check
bitz followed by message bits.

The input must contain exactly M elements. If it i frame-based, then it must be a
column vector.

=) |
F

Generator matrix [binary K-by-M matriz]:
110:0711:711:1071] eveld]

Decoding table [0 for table coresponding to Generator matriz):

a

Ok | Lancel | Help | Apply

Generator matrix
Generator matrix for the code; same as in Binary Linear Encoder
block.

Decoding table
Either a 2¥%-by-N matrix that lists correction vectors for each
codeword’s syndrome; or the scalar 0, in which case the block
defaults to the table corresponding to the Generator matrix
parameter.

Pair Block Binary Linear Encoder

2-47

Binary Linear Encoder

Purpose
Library

Description

B

Linear Encoder

Dialog
Box

Pair Block

2-48

Create linear block code from binary vector data
Block sublibrary of Channel Coding

The Binary Linear Encoder block creates a binary linear block code
using a generator matrix that you specify. If K is the message length of
the code, then the Generator matrix parameter must have K rows.
If N is the codeword length of the code, then Generator matrix must
have N columns.

The input must contain exactly K elements. If it is frame-based, then it
must be a column vector. The output is a vector of length N.

This block supports double and boolean data types.

E! Block Parameters: Binary Linear Encoder ﬂﬂ

—Binary Linear Encoder [mask]

Create a binary linear block code with message length K. and codeword length M,
where K. and M are the number of rows and columns of the generator matrix
respectively.

To uge the Binary Linear Decoder block at the decoder side, provide a generator
matrix in the standard spstematic form [P 1].

The input must contain exactly K. elements. [f it iz frame-bazed, then it must be a
columh vechar.

=
F

Generator matrix [binary K-by-M matriz]:
110:011:111:101 4]

Ok | Lancel Help Apply

Generator matrix
A K-by-N matrix, where K is the message length and N is the
codeword length.

Binary Linear Decoder

Binary-Output RS Decoder
|

Purpose Decode Reed-Solomon code to recover binary vector data
Librclry Block sublibrary of Channel Coding
Description The Binary-Output RS Decoder block recovers a binary message

vector from a binary Reed-Solomon codeword vector. For proper
y—— decoding, the parameter values in this block should match those in the
RS Decoder EN correspondingBinary-Input RS Encoder block.

The Reed-Solomon code has message length K and codeword length N.
You specify both N and K directly in the dialog box. The symbols for the
code are binary sequences of length M, corresponding to elements of the
Galois field GF(2M), where the first bit in each sequence is the most
significant bit. Restrictions on M and N are described in “Restrictions
on the M and the Codeword Length N” on page 2-42. The difference N-K
must be an even integer.

The input and output are binary-valued signals that represent
messages and codewords, respectively. The input must be a frame-based
column vector whose length is an integer multiple of M*K. The block
can accept the data types int8, uint8, int16, uint16, int32, uint32,
single, and double. The output is a frame-based column vector whose
length is the same integer multiple of M*N, and whose data type is
inherited from the input. For more information on representing data
for Reed-Solomon codes, see “Integer Format (Reed-Solomon Only)” in
Using the Communications Blockset.

The default value of M is ceil(log2(N+1)), that is, the smallest integer
greater than or equal to log2(N+1). You can change the value of M
from the default by specifying the primitive polynomial for GF(2M), as
described in “Specifying the Primitive Polynomial” on page 2-42 below.
If N is less than 2M-1, the block uses a shortened Reed-Solomon code.

You can also specify the generator polynomial for the Reed-Solomon
code, as described in “Specifying the Generator Polynomial” on page
2-42,

Each M*K input bits represent K integers between 0 and 2M-1.
Similarly, each M*N output bits represent N integers between 0 and

2-49

Binary-Output RS Decoder

2-50

2M.1. These integers in turn represent elements of the Galois field
GF(2M).

The second output is a vector of the number of errors detected during
decoding of the codeword. A -1 indicates that the block detected
more errors than it could correct using the coding scheme. An (N,K)
Reed-Solomon code can correct up to floor((N-K)/2) symbol errors
(not bit errors) in each codeword. The data type of this output is also
inherited from the input signal.

You can disable the second output by deselecting Output port for
number of corrected errors. This removes the block’s second output
port.

Binary-Output RS Decoder

Dialog
Box

E! Function Block Parameters: Binary-Output RS D

—Binary-Output RS Decoder [mask)] [link]

x|

Attemnpt to decode the input received signal using an [M.K] Reed-Solomon decoder
with the namow-senze generator polynomial. The input must be a frame-based column
wector with an integer multiple of M ceilllog2(M+1]] bits. Each group of M*ceilllog2
[M+1]] input bits reprezents one received word to be decoded.

The optional ‘Primitive polynomial' parameter iz a row vector that reprezents the binary
coefficients of the primitive polynomial in order of descending powers. ‘When such a
uger-defined Primitive polynomial is provided, the number of input bits must be an
integer multiple of M times the order of the Primitive polynomial instead.

The optional 'Generator polynomial' parameter iz a row vector that reprezents the
coefficients of the generator polynomial in order of descending powers. Each
coefficient iz an element of the Galoiz field defined by the primitive polynomial.

The number of corected emors can be zent ta a second output port by checking the
'‘Dutput number of corrected enors' check box. A decoding failure occurs when a
certain received word in the input containg more than [M-K]42 symbal erors. This iz
indicated by a value of -1 in the comesponding position in the second output vector,

Codeword length M:
@
Meszage length K:
E]
[~ Specify primitive polynarnial

Frimitive polynomial:
Jroti)
[~ Specify generator polynarnial

Generator polynomial:

Jrsgenpoly(? 3]
¥ Output number of conected erors

Output data type: I double LI

QK I Cancel | Help | Apply

Codeword length N

The codeword length. The input has vector length M*N.

Message length K

The message length. The first output has vector length M*K.

Specify primitive polynomial

When you select this box, you can specify the primitive polynomial

as a binary row vector.

2-51

Binary-Output RS Decoder

Algorithm

Pair Block

References

See Also

2-52

Primitive polynomial
Binary row vector representing the primitive polynomial in
descending order of powers.

Specify generator polynomial
When you select this box, you can specify the generator polynomial
as an integer row vector.

Generator polynomial
Integer row vector, whose entries are in the range from 0 to 2M-1,
representing the generator polynomial in descending order of
powers.

Output number of corrected errors
When you select this box, the block outputs the number of
corrected errors in each word through a second output port.

Output data type
The output type of the block can be specified as a boolean or
double. By default, the block sets this to double.

This block uses the Berlekamp-Massey decoding algorithm. For
information about this algorithm, see the references listed below.

Binary-Input RS Encoder

[1] Wicker, Stephen B., Error Control Systems for Digital

Communication and Storage, Upper Saddle River, N.J., Prentice Hall,
1995.

[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York,
McGraw-Hill, 1968.

Integer-Output RS Decoder

Binary Symmetric Channel

Purpose
Library

Description

BSC
En

Dialog
Box

Introduce binary errors
Channels

The Binary Symmetric Channel block introduces binary errors to the
signal transmitted through this channel.

The input port is the transmitted binary signal. The input can be either
a scalar, a sample-based vector, or a frame-based row vector. This block
processes each vector element independently, and introduces an error in
a given spot with probability Error probability.

The first output port is the binary signal that has passed through
the channel. The second output port is the vector of errors that were
introduced. To suppress the second output port, clear the Output
error vector check box.

E! Function Block Parameters: Binary Symmekric ﬂ

—Binary Symmetric Channel [mazk] (link]

Add binary errors ta the input signal. The error probability can be a scalar or a vector
with the zame length az the input vector length.

The optional gecond output iz the eror vector.

=
F

Error probability:
Joos

Initial seed:
7
¥ Output error vectar

Output datatype: I double LI

QK I Cancel Help | Apply |

Error probability
The probability that a binary error will occur. The value of this
parameter must be between zero and one.

Initial seed
The initial seed value for the random number generator.

2-53

Binary Symmetric Channel

Output error vector
If this box is checked, then the block outputs the vector of errors.

Output datatype
You can set the output data type to double or boolean.

See Also Bernoulli Binary Generator

2-54

Bipolar to Unipolar Converter

Purpose Map bipolar signal into unipolar signal in range [0, M-1]
Library Utility Blocks
Description The Bipolar to Unipolar Converter block maps the bipolar input signal
to a unipolar output signal. If the input consists of integers in the set
Bipolar to {-M+1, -M+3, -M+5,..., M-1}, where M is the M-ary number parameter,
Unipalar

then the output consists of integers between 0 and M-1.

Conwverter

The table below shows how the block’s mapping depends on the
Polarity parameter.

Output Corresponding to
Polarity Parameter Value Input Value of k
Positive (M-1+k)/2
Negative (M-1-k)/2
Dialog 21
Box —Bipolar to Un.ipolar E.IonVPTrter [mas.k} . . .
Convert a bipolar signal into a unipolar gsignal in the range [0, M-1]. where M iz the
-ary number.
-ary number:
Polarity: I Pasitive LI
Ok | Lancel | Help | Apply |

M-ary number
The number of symbols in the bipolar or unipolar alphabet.

Polarity
A value of Positive (respectively, Negative) causes the block to
maintain (respectively, reverse) the relative ordering of symbols
in the alphabets.

2-55

Bipolar to Unipolar Converter

Examples If the input is [-3; -1; 1; 3], the M-ary number parameter is 4, and
the Polarity parameter is Positive, then the output is [0; 1; 2; 3].
Changing the Polarity parameter to Negative changes the output to
[3; 2; 1; O]

Pair Block Unipolar to Bipolar Converter

2-56

Bit to Integer Converter

Purpose
Library

Description

Bit to Integer
Comrerter

Dialog
Box

Map vector of bits to corresponding vector of integers
Utility Blocks

The Bit to Integer Converter block maps groups of bits in the input
vector to integers in the output vector. If M is the Number of bits
per integer parameter, then the block maps each group of M bits to
an integer between 0 and 2-1. As a result, the output vector length is
1/M times the input vector length.

If the input is sample-based input, then it must be a vector whose
length equals the Number of bits per integer parameter. If the input
is frame-based, then it must be a column vector whose length is an
integer multiple of Number of bits per integer.

The block interprets the first bit in each group as the most significant
bit.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, and double.

EJFunction Block Parameters: Bit to Integer Con x|

—Bit to Integer Converter [mask] [link]

Map a vector of bits to a comesponding vector of integers. The first bit of the input
wector iz assumed to be the most significant bit [MSE]. The Mumber of bits per integer
value defines how many bits are mapped to each integer.

I case of sample-bazed inputs, the input must be a vector whose width equals the
number of bitz per integer. |n case of frame-bazed inputs, the input must be a column
vector whose width iz an integer multiple of the number of bits per integer.

=
F

Mumber of bits per integer:

Output data typel Same az input LI

QK I Cancel | Help | Apply |

Number of bits per integer
The number of input bits that the block maps to each integer of
the output. This parameter must be an integer between 1 and 31.

2-57

Bit to Integer Converter

2-58

Examples

Pair Block

Output data type
The output data type can be set to int8, uint8, int16, uint16,
int32, uint32, single, or double. The output can be of type
boolean only if M is 2 and this field is set to Same as input.

If the input is [0; 1; 1; 1; 1; 1; O; 1] and the Number of bits per integer
parameter is 4, then the output is [7; 13]. The block maps the first group
of four bits (0, 1, 1, 1) to 7 and the second group of four bits (1, 1, 0, 1) to
13. Notice that the output length is one-fourth of the output length.

Integer to Bit Converter

BPSK Demodulator Baseband

Purpose
Library

Description

AL

BFSK

Dialog
Box

Demodulate BPSK-modulated data
PM, in Digital Baseband sublibrary of Modulation

The BPSK Demodulator Baseband block demodulates a signal that was
modulated using the binary phase shift keying method. The input is

a baseband representation of the modulated signal. The input can be
either a scalar or a frame-based column vector. The block can accept
the data types single and double.

The input must be a discrete-time complex signal. The block maps
the points exp(j6) and -exp(j0) to 0 and 1, respectively, where 0 is the
Phase offset parameter.

EIFunction Block Parameters: BPSK Demodulato x|

—BPSE Demodulator Baseband

Demodulate the input signal using the binary phase shift keying method.

For zample-based input, the input must be a scalar. For frame-bazed input, the input
muzt be a column vector.

The Decision type parameter allows a choice between Hard decizion demodulation,
Log-likelihood ratio and Approximate log-likelihood ratio. The output values for
Log-likelihood ratio and Approximate log-likelihood ratio Decigion types are of the
zame data type az the input values.

=

FPhase offzet(rad]: IE
Decizion type: I Hard decizion LI
Output data type: I double LI

QK I Cancel Help | Apply |

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Decision type
Specifies the use of hard decision, LLR, or approximate
LLR during demodulation. See “Exact LLR Algorithm” and
“Approximate LLR Algorithm” for algorithm details.

2-59

BPSK Demodulator Baseband

2-60

Pair Block
See Also

Output data type
When Decision type is set to Hard decision, output can be
int8, uint8, int16, uint16, int32, uint32, boolean, single, or
double. When Decision type is set to Log-1likelihood ratio
or Approximate log-likelihood ratio, the output data type is
inherited from the input (i.e., if the input is of data type double,
the output is also of data type double).

BPSK Modulator Baseband

M-PSK Demodulator Baseband, QPSK Demodulator Baseband, DBPSK
Demodulator Baseband

BPSK Modulator Baseband

Purpose
Library

Description

L

BFSK

Dialog
Box

Modulate using binary phase shift keying method
PM, in Digital Baseband sublibrary of Modulation

The BPSK Modulator Baseband block modulates using the binary phase
shift keying method. The output is a baseband representation of the
modulated signal. For both integer and bit inputs, this block can accept
the data types int8, uint8, int16, uint16, int32, uint32, boolean,
single, and double.

The input must be a discrete-time binary-valued signal. If the input bit
is 0 or 1, respectively, then the modulated symbol is exp(j0) or -exp(j0)
respectively, where 6 is the Phase offset parameter.

EJFunction Block Parameters: BPSK Modulator B x|

—BPSK Modulator Baseband [mask] [link]
Modulate the input zsignal ugsing the binary phaze shift keying method.

For zample-based input, the input must be a scalar. For frame-bazed input, the input
must be a column vectar.

=
F

Fhase offzet [rad):
&

Output data type: I double LI

QK I Cancel Help | Apply |

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Output data type
The output data type can be set to double, single, Fixed-point,
User-defined, or Inherit via back propagation.

Setting this parameter to Fixed-point or User-defined enables
fields in which you can further specify details. Setting this
parameter to Inherit via back propagation, sets the output
data type and scaling to match the following block.

2-61

BPSK Modulator Baseband

Output word length
Specify the word length, in bits, of the fixed-point output data
type. This parameter is only visible when you select Fixed-point
for the Output data type parameter.

User-defined data type
Specify any signed built-in or signed fixed-point data type. You
can specify fixed-point data types using the sfix, sint, sfrac,
and fixdt functions from Simulink Fixed Point. This parameter
is only visible when you select User-defined for the Output
data type parameter.

Set output fraction length to
Specify the scaling of the fixed-point output by either of the
following two methods:

® Choose Best precision to have the output scaling
automatically set such that the output signal has the best
possible precision.

® Choose User-defined to specify the output scaling in the
Output fraction length parameter.

This parameter is only visible when you select Fixed-point for the
Output data type parameter or when you select User-defined
and the specified output data type is a fixed-point data type.

Output fraction length
For fixed-point output data types, specify the number of fractional
bits, or bits to the right of the binary point. This parameter is
only visible when you select Fixed-point or User-defined for
the Output data type parameter and User-defined for the Set
output fraction length to parameter.

Pair Block BPSK Demodulator Baseband

See Also M-PSK Modulator Baseband, QPSK Modulator Baseband, DBPSK
Modulator Baseband

2-62

Charge Pump PLL

Purpose
Library

Description

Charge Filt
Fump FL
FLL o

Implement charge pump phase-locked loop using digital phase detector
Components sublibrary of Synchronization

The Charge Pump PLL (phase-locked loop) block automatically adjusts
the phase of a locally generated signal to match the phase of an input
signal. It is suitable for use with digital signals.

This PLL has these three components:

* A sequential logic phase detector, also called a digital phase detector
or a phase/frequency detector.

* A filter. You specify the filter’s transfer function using the Lowpass
filter numerator and Lowpass filter denominator parameters.
Each is a vector that gives the respective polynomial’s coefficients in
order of descending powers of s.

To design a filter, you can use functions such as butter, cheby1,
and cheby?2 in the Signal Processing Toolbox. The default filter is
a Chebyshev type II filter whose transfer function arises from the
command below.

[num, den] = cheby2(3,40,100,'s")

® A voltage-controlled oscillator (VCO). You specify characteristics
of the VCO using the VCO input sensitivity, VCO quiescent
frequency, VCO initial phase, and VCO output amplitude
parameters.

The input signal represents the received signal. The input must be a
sample-based scalar signal. The three output ports produce:

® The output of the filter
® The output of the phase detector
® The output of the VCO

2-63

Charge Pump PLL

2-64

Dialog
Box

A sequential logic phase detector operates on the zero crossings of
the signal waveform. The equilibrium point of the phase difference
between the input signal and the VCO signal equals n. The sequential
logic detector can compensate for any frequency difference that might
exist between a VCO and an incoming signal frequency. Hence, the
sequential logic phase detector acts as a frequency detector.

Z)Block Parameters: Charge Pump PLL 2=l
—Charge Pump PLL [mask]
Implement a charge pump phase-locked loop uzing a digital phaze detectar. The three

outputs are the outputs of the lowpass filter, the phasze detector, and the voltage
controlled ozcillator [(YCO). The input must be a sample-bazed scalar zsignal.

=
F

Lowpass filter numerator:

Lowpass filker denominator:
I[‘I E7.46 2270.9 40002]
WO input sensitivity [HzAf):
Jh
WO quiescent frequency [Hz):
J100

WCO initial phaze [rad]:

Jo
WO output amplitude [V]:

Jh

Ok I Lancel | Help Apply

Lowpass filter numerator

The numerator of the lowpass filter’s transfer function,
represented as a vector that lists the coefficients in order of
descending powers of s.

Lowpass filter denominator

The denominator of the lowpass filter’s transfer function,
represented as a vector that lists the coefficients in order of
descending powers of s.

Charge Pump PLL

See Also

References

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the
shift from the VCO quiescent frequency value. The units of
VCO input sensitivity are Hertz per volt.

VCO quiescent frequency (Hz)
The frequency of the VCO signal when the voltage applied to it is
zero. This should match the frequency of the input signal.

VCO initial phase (rad)
The initial phase of the VCO signal.

VCO output amplitude
The amplitude of the VCO signal.

Phase-Locked Loop

For more information about digital phase-locked loops, see the works
listed in“Selected Bibliography for Synchronization” in Using the
Communications Blockset.

2-65

CMA Equalizer

2-66

Purpose

Library

Description

Input

Bqualized
Er

ks

Equalize using constant modulus algorithm
Equalizers

The CMA Equalizer block uses a linear equalizer and the constant
modulus algorithm (CMA) to equalize a linearly modulated baseband
signal through a dispersive channel. During the simulation, the block
uses the CMA to update the weights, once per symbol. If the Number
of samples per symbol parameter is 1, then the block implements a
symbol-spaced equalizer; otherwise, the block implements a fractionally
spaced equalizer.

When using this block, you should initialize the equalizer weights with
a nonzero vector. Typically, CMA is used with differential modulation;
otherwise, the initial weights are very important. A typical vector

of initial weights has a 1 corresponding to the center tap and zeros
elsewhere.

Input and Output Signals
The port labeled Input receives the signal you want to equalize, as a

scalar or a frame-based column vector. The port labeled Equalized
outputs the result of the equalization process.

You can configure the block to have one or more of the extra ports listed
in the table below.

CMA Equalizer

Port Meaning How to Enable
Err output y(R -|y|?), where y is | Check the Output
the equalized signal | error check box.
and R is a constant
related to the signal
constellation
Wts output A vector listing the Check the Output

weights after the
block has processed
either the current
input frame or, in
sample-based mode,
the current input
sample.

weights check box.

Equalizer Delay

The delay between the transmitter’s modulator output and the CMA
equalizer output is typically unknown (unlike the delay for other
adaptive equalizers in this blockset). If you need to determine the delay,
you can use the Find Delay block.

2-67

CMA Equalizer

Dialog
Box

2-68

EBlock Parameters: CMA Equalizer 2=l

—Chidy Equalizer [mask]

Equalize a linearly modulated signal through a dispersive channel using the Chis,
algorithm.

The block computes filker weights with the CMA algorithm and filkers the input signal.
‘wihen the number of samples per symbols is 1, the filter weights are updated once for
each symbol, for a symbol spaced equalizer. “When the number of samples per symbals
is greater than one, the weights are update once every Mth sample, for a fractionally
spaced equalizer.

The Leakage factor must be in the range Oto 1. A value of 1 cormesponds to a
conventional weight update algorithm, and a walue of 0 coresponds to a memaryless
update algarithim.

=3 |
F

Mumber of taps:
[
Mumber of zamples per symbal:
Jh

Signal constellation:
Jaammad([0:15],16]

Step size:

Joo

Leakage factor:

Jh

Initial weights:

oo

¥ Output emar

[~ Output weights

Ok I Lancel Help Apply

Number of taps

The number of taps in the filter of the equalizer.

Number of samples per symbol

The number of input samples for each symbol.

Signal constellation

A vector of complex numbers that specifies the constellation for

the modulation.

Step size
The step size of the CMA.

CMA Equalizer

References

See Also

Leakage factor
The leakage factor of the CMA, a number between 0 and 1. A
value of 1 corresponds to a conventional weight update algorithm,
and a value of 0 corresponds to a memoryless update algorithm.

Initial weights
A vector that lists the initial weights for the taps.

Output error
If you check this box, the block outputs the error signal described
in the table above.

Output weights
If you check this box, the block outputs the current weights.

[1] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle
River, N.J., Prentice-Hall, 1996.

[2] Johnson, Richard C. Jr., Philip Schniter, Thomas. J. Endres, et al.,

"Blind Equalization Using the Constant Modulus Criterion: A Review,"
Proceedings of the IEEE, vol. 86, pp. 1927-1950, October 1998.

LMS Linear Equalizer, LMS Decision Feedback Equalizer, RLS Linear
Equalizer, RLS Decision Feedback Equalizer

2-69

Complex Phase Difference

2-70

Purpose
Library

Description

Complex Phass
Drifference

Dialog
Box

See Also

Output phase difference between two complex input signals
Utility Blocks

The Complex Phase Difference block accepts two complex input signals
that have the same size and frame status. The output is the phase
difference from the second to the first, measured in radians. The
elements of the output are between -t and .

The input signals can have any size or frame status. This block
processes each pair of elements independently.

[=)Block Parameters: Complex Phase Difference 21l

Output the phase difference between the bwo complex input signals. The range of
the phaze difference iz from -pi to pi

"EDmplex Fhase Difference [maszk]

=5 ancel | e -

Complex Phase Shift

Complex Phase Shift

Purpose
Library

Description

n Complex

PhF'hass_- Shift

Dialog
Box

See Also

Shift phase of complex input signal by second input value
Utility Blocks

The Complex Phase Shift block accepts a complex signal at the port
labeled In. The output is the result of shifting this signal’s phase by an
amount specified by the real signal at the input port labeled Ph. The Ph
input is measured in radians, and must have the same size and frame
status as the In input.

The input signals can have any size or frame status. This block
processes each pair of corresponding elements independently.

=)Block Parameters: Complex Phase Shift 21l

Shift the phaze of the complex input gsignal by the "Ph' input value.

"Eomplex Fhase Shift [mask)]

............. g K | Cancel Help o

Complex Phase Difference

2-71

Continuous-Time VCO

Purpose
Library

Description

WCo

Dialog
Box

2-72

Implement voltage-controlled oscillator
Components sublibrary of Synchronization

The Continuous-Time VCO (voltage-controlled oscillator) block
generates a signal whose frequency shift from the Quiescent
frequency parameter is proportional to the input signal. The input
signal is interpreted as a voltage. If the input signal is u(¢), then the
output signal is

() = A, cos(2nfct +2nk, J.é u(tdt+ (pj

where A_ is the Qutput amplitude parameter, f, is the Quiescent
frequency parameter, %_is the Input sensitivity parameter, and ¢
is the Initial phase parameter.

This block uses a continuous-time integrator to interpret the equation
above.

The input and output signals are both sample-based scalars.

E! Function Block Parameters: Continuous-Time ¥ ﬂ

—Continuous-Time YCO [mask]

Generate a continuous-time output signal whoze frequency changes in responge to the
amplitude variations of the input gignal. The input signal must be a sample-based
sralar.

=
F

Output amplitude [4):
Quiescent frequency [Hz):
Jio

Input sensitivity [HzA7):

Jh

Initial phase [rad):

Jo

Lancel Help Lpply

Continuous-Time VCO

See Also

Output amplitude
The amplitude of the output.

Quiescent frequency
The frequency of the oscillator output when the input signal is
ZEro.

Input sensitivity
This value scales the input voltage and, consequently, the shift
from the Quiescent frequency value. The units of Input
sensitivity are Hertz per volt.

Initial phase
The initial phase of the oscillator in radians.

Discrete-Time VCO

2-73

Convolutional Deinterleaver

Purpose
Library

Description

Convalutional
Deinterleaver

Dialog
Box

2-74

Restore ordering of symbols that were permuted using shift registers
Convolutional sublibrary of Interleaving

The Convolutional Deinterleaver block recovers a signal that was
interleaved using theConvolutional Interleaver block. The parameters
in the two blocks should have the same values.

The input can be either a scalar or a frame-based column vector. It can
be real or complex. The sample times of the input and output signals
are the same.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

EBlock Parameters: Convolutional Deinterleaver 21l

[mazk]

— Corvaolutional D eint

A convolutional deinterleaver consists of M shift registers. The ith register has delay
[M-i]*B where B iz a specified register length step. “With each new input symbaol, a
commutatar switches to a new register and the new symbol iz shifted in while the
oldest symbal in that register iz shifted out. “When the commutator reaches the Mth
register, upoh the next new input, it returns to the first register.

P.
Fiows of shift registers:
Fiegister length step:
|2
Initial conditions:

Jo

Ok | Lancel | Help Apply

Rows of shift registers
The number of shift registers that the block uses internally.

Register length step
The difference in symbol capacity of each successive shift register,
where the last register holds zero symbols.

Convolutional Deinterleaver

Examples

Pair Block
See Also

References

Initial conditions
The values that fill each shift register when the simulation begins.

For an example that uses this block, see “Example: Convolutional
Interleavers”.

Convolutional Interleaver
General Multiplexed Deinterleaver, Helical Deinterleaver

[1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for
Digital Communications. New York: Plenum Press, 1981.

[2] Forney, G., D., Jr. "Burst-Correcting Codes for the Classic Bursty
Channel." IEEE Transactions on Communications, vol. COM-19,
October 1971. 772-781.

[3] Ramsey, J. L. "Realization of Optimum Interleavers." IEEE
Transactions on Information Theory, IT-16 (3), May 1970. 338-345.

2-75

Convolutional Encoder

2-76

Purpose
Library

Description

Convelutional
Encoder

Create convolutional code from binary data
Convolutional sublibrary of Channel Coding

The Convolutional Encoder block encodes a sequence of binary input
vectors to produce a sequence of binary output vectors. This block can
process multiple symbols at a time.

Input and Output Sizes

If the encoder takes % input bit streams (that is, can receive 2* possible
input symbols), this block’s input vector length is L*k for some positive
integer L. Similarly, if the encoder produces n output bit streams (that
is, can produce 2" possible output symbols), this block’s output vector
length is L*n.

The input can be a sample-based vector with L = 1, or a frame-based
column vector with any positive integer for L.

For both its inputs and outputs for the data ports, the block supports
double, single, boolean, int8, uint8, int16, uint16, int32, and
uint32. The port data types are inherited from the signals that drive
the block. The input reset port supports double and boolean typed
signals.

Specifying the Encoder

To define the convolutional encoder, use the Trellis structure
parameter. This parameter is a MATLAB structure whose format is
described in “Trellis Description of a Convolutional Encoder” in the
Communications Toolbox documentation. You can use this parameter
field in two ways:

® If you have a variable in the MATLAB workspace that contains the
trellis structure, enter its name as the Trellis structure parameter.
This way is preferable because it causes Simulink to spend less time
updating the diagram at the beginning of each simulation, compared
to the usage described next.

Convolutional Encoder

Dialog
Box

¢ If you want to specify the encoder using

its constraint length,

generator polynomials, and possibly feedback connection polynomials,
use a poly2trellis command within the Trellis structure field.
For example, to use an encoder with a constraint length of 7, code
generator polynomials of 171 and 133 (in octal numbers), and a

feedback connection of 171 (in octal), set
parameter to

poly2trellis(7,[171 133],171)

The encoder registers begin in the all-zeros
encoder so that it resets its registers to the
course of the simulation. To do this, set the

the Trellis structure

state. You can configure the
all-zeros state during the
Operation mode to Reset

on nonzero input via port. The block then opens a second input
port, labeled Rst. The signal at the Rst port is a scalar signal. When
it is nonzero, the encoder resets before processing the data at the first

input port.

EJFunction Block Parameters: Convolutional Ence

—Convolutional Encoder [maszk] (link]

Convolutionally encode binary data. Use the poly2trelis function to create a trellis
uging the constraint length, code generator [octal] and feedback connection [octal].

Select the "Terminate trellis by appending bits" operation mode to terminate the trellis
at the all-zero state by appending tail bitz at the end of each input frame. Check the
Puncture code checkbox to puncture the encoded data for all other operation
modes.

Usze the istrellis function in MATLAE to check if a structure is a valid trellis structure.

Trellis structure:
Ipoly2trellis[?, [171133])

Operation mode:l Continuous LI

Puncture vectar:

|[1;1;U;1;U;1]

QK I Cancel Help Apply

Trellis structure
MATLAB structure that contains the
convolutional encoder.

trellis description of the

2-77

Convolutional Encoder

Puncture
Pattern
Examples

See Also

References

2-78

Operation mode
In Continuous mode, the block retains the encoder states at the
end of each frame, for use with the next frame.

In Truncated (reset every frame) mode, the block treats each
frame independently. I.e., the encoder states are reset to all-zeros
states at the start of each frame.

In Terminate trellis by appending bits mode, the block
treats each frame independently. For each input frame, extra bits
are used to set the encoder states to all-zeros states at the end of
the frame.

In Reset on nonzero input via port mode, the block has an
additional input port, labeled Rst. When the Rst input is nonzero,
the encoder resets to the all-zeros state.

Puncture code
Selecting this option opens the field Puncture vector.

Puncture vector
Vector used to puncture the encoded data. The puncture vector is a
pattern of 1s and Os where the Os indicate the punctured bits. This
field appears when the check box Punctured code is selected.

For some commonly used puncture patterns for specific rates and
polynomials, see the last three references.

Viterbi Decoder, APP Decoder

[1] Clark, George C. Jr. and J. Bibb Cain, Error-Correction Coding for
Digital Communications, New York, Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein,
Data Communications Principles, New York, Plenum, 1992.

Convolutional Encoder

[3] Yasuda, Y., et. al., “High rate punctured convolutional codes for soft
decision Viterbi decoding,” IEEE Transactions on Communications, Vol.
COM-32, No. 3, pp 315-319, March 1984.

[4] Haccoun, D., and Begin, G., “High-rate punctured convolutional
codes for Viterbi and Sequential decoding,” IEEE Transactions on
Communications, Vol. 37, No. 11, pp 1113-1125, Nov. 1989.

[5] Begin, G., et.al., “Further results on high-rate punctured
convolutional codes for Viterbi and sequential decoding,” IEEE
Transactions on Communications, Vol. 38, No. 11, pp 1922-1928, Nov.
1990.

2-79

Convolutional Interleaver

2-80

Purpose
Library

Description

Convalutional
Interleaver

Permute input symbols using set of shift registers
Convolutional sublibrary of Interleaving

The Convolutional Interleaver block permutes the symbols in the
input signal. Internally, it uses a set of shift registers. The delay
value of the kth shift register is (k-1) times the Register length step
parameter. The number of shift registers is the value of the Rows of
shift registers parameter.

The Initial conditions parameter indicates the values that fill each
shift register at the beginning of the simulation (except for the first shift
register, which has zero delay). If Initial conditions is a scalar, then
its value fills all shift registers except the first; if Initial conditions
is a column vector whose length is the Rows of shift registers
parameter, then each entry fills the corresponding shift register. The
value of the first element of the Initial conditions parameter is
unimportant, since the first shift register has zero delay.

The input can be either a scalar or a frame-based column vector. It can
be real or complex. The sample times of the input and output signals
are the same.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

Convolutional Interleaver

Dialog
Box

Examples

Pair Block
See Also

References

EBlock Parameters: Convolutional Interleaver i 2=l

—Convolutional Interl [mazk]

A convolutional interleaver congists of M shift registers. The ith register haz delay
[i-1]*B where B iz a specified register length step. ‘With each new input spmbol, &
commutatar switches to a new register and the new symbol iz shifted in while the
oldest symbal in that register iz shifted out. “When the commutator reaches the Mth
register, upoh the next new input, it returns to the first register.

=
F

Fiows of shift registers:
Fiegister length step:
|2

Initial conditions:
Jo

Ok | Lancel | Help Apply

Rows of shift registers
The number of shift registers that the block uses internally.

Register length step
The number of additional symbols that fit in each successive shift
register, where the first register holds zero symbols.

Initial conditions
The values that fill each shift register when the simulation begins.

For an example that uses this block, see “Example: Convolutional
Interleavers”.

Convolutional Deinterleaver
General Multiplexed Interleaver, Helical Interleaver

[1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for
Digital Communications. New York: Plenum Press, 1981.

[2] Forney, G., D., Jr. "Burst-Correcting Codes for the Classic Bursty

Channel." IEEE Transactions on Communications, vol. COM-19,
October 1971. 772-781.

2-81

Convolutional Interleaver

[3] Ramsey, J. L. "Realization of Optimum Interleavers." IEEE
Transactions on Information Theory, IT-16 (3), May 1970. 338-345.

2-82

CPFSK Demodulator Baseband

Purpose
Library

Description

AL

CPFSK

Demodulate CPFSK-modulated data
CPM, in Digital Baseband sublibrary of Modulation

The CPFSK Demodulator Baseband block demodulates a signal that
was modulated using the continuous phase frequency shift keying
method. The input is a baseband representation of the modulated
signal. The M-ary number parameter, M, is the size of the input
alphabet. M must have the form 2X for some positive integer K.

The Modulation index parameter times n radians is the phase shift
in the modulated signal due to the latest symbol, when that symbol is
the integer 1. The Phase offset parameter is the initial phase of the
modulated waveform.

Traceback Length and Output Delays

Internally, this block creates a trellis description of the modulation
scheme and uses the Viterbi algorithm. The Traceback length
parameter, D, in this block is the number of trellis branches used to
construct each traceback path. D influences the output delay, which
is the number of zero symbols that precede the first meaningful
demodulated value in the output.

¢ If the input signal is sample-based, then the delay consists of D+1
zero symbols.

e Ifthe input signal is frame-based, then the delay consists of D zero
symbols.

Outputs and Symbol Sets

If the Output type parameter is set to Integer, then the block
produces odd integers between -(M-1) and M-1.

If the Output type parameter is set to Bit, then the block produces
groupings of K bits. Each grouping is called a binary word.

In binary output mode, the block first maps each input symbol to an
intermediate value as in the integer output mode. The block then maps

2-83

CPFSK Demodulator Baseband

2-84

the odd integer k to the nonnegative integer (k+M-1)/2. Finally, the
block maps each nonnegative integer to a binary word, using a mapping
that depends on whether the Symbol set ordering parameter is

set to Binary or Gray. For more information about Gray and binary
coding, see “Binary-Valued and Integer-Valued Signals” in Using the
Communications Blockset.

The input can be either a scalar or a frame-based column vector and
must be of type single or double.

Processing an Upsampled Modulated Signal

The input signal can be an upsampled version of the modulated signal.
The Samples per symbol parameter is the upsampling factor. It must
be a positive integer. For more information, see “Upsampled Signals
and Rate Changes” in Using the Communications Blockset.

CPFSK Demodulator Baseband

Dialog
Box

ZJFunction Block Parameters: CPFSK Demodulator Ba x|

—LCPFSK Demodulator Bazeband [mazk] (link]

Demodulate the CPFSK modulated input signal using the Yiterbi algorithm. Traceback
length is the number of trellis branches that the algorithm wses to construct each
traceback path.

For zample-based input, the input must be a scalar. For frame-bazed input, the input
must be a column vectar.

The output can be either bitz or integers. |n case of bit output, the output width iz an
integer multiple of the number of bits per symbal. The symbols can be either
binary-demapped or Gray-demapped inta bits.

I case of frame-based input, the width of the input frame represents the product of the
number of symbols and the Samples per symbal value.

I case of sample-bazed input, the sample time of the input is the symbal period divided
by the Samples per spmbol value.

-y number:

Olutput bype: I Integer

Ll L«

Symbaol zet ordering:l Binary
Modulation index:

|5
Fhase offzet [rad):
Jo
Samples per symbal:
Ja
Traceback length:
J16

Output datatype: I double LI

QK I Cancel Help | Apply

M-ary number
The size of the alphabet.

Output type

Determines whether the output consists of integers or groups

of bits.

Symbol set ordering

Determines how the block maps each integer to a group of output
bits. This field is active only when Output type is set to Bit.

2-85

CPFSK Demodulator Baseband

2-86

Pair Block
See Also

References

Modulation index
The number of half-revolutions of phase shift in the modulated
signal after modulating the latest symbol of 1.

Phase offset (rad)
The initial phase of the modulated waveform.

Samples per symbol
The number of input samples that represent each modulated
symbol.

Traceback length
The number of trellis branches that the Viterbi Decoder block
uses to construct each traceback path.

Output datatype
The output data type can be boolean, int8, int16, int32, or
double.

CPFSK Modulator Baseband

CPM Demodulator Baseband, Viterbi Decoder, M-FSK Demodulator
Baseband

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital
Phase Modulation. New York: Plenum Press, 1986.

CPFSK Modulator Baseband

Purpose
Library

Description

LI

CPFSK

Modulate using continuous phase frequency shift keying method
CPM, in Digital Baseband sublibrary of Modulation

The CPFSK Modulator Baseband block modulates using the continuous
phase frequency shift keying method. The output is a baseband
representation of the modulated signal. The M-ary number parameter,
M, is the size of the input alphabet. M must have the form 2¥ for some
positive integer K.

The Modulation index parameter times n radians is the phase shift
due to the latest symbol when that symbol is the integer 1. The Phase
offset parameter is the initial phase of the output waveform, measured
in radians.

For the exact definitions of the rectangular pulse shape that this block
uses, see the work by Anderson, Aulin, and Sundberg among the
references listed below.

Inputs and Symbol Sets

If the Input type parameter is set to Integer, then the block accepts
odd integers between -(M-1) and M-1.

If the Input type parameter is set to Bit, then the block accepts
groupings of K bits. Each grouping is called a binary word. The input
vector length must be an integer multiple of K.

In binary input mode, the block maps each binary word to an integer
between 0 and M-1, using a mapping that depends on whether the
Symbol set ordering parameter is set to Binary or Gray. The block
then maps the integer k to the intermediate value 2k-(M-1) and proceeds
as in the integer input mode. For more information, see “Binary-Valued
and Integer-Valued Signals” in Using the Communications Blockset.

The input can be either a scalar or a frame-based column vector. If
Input type is Bit, then the input can also be a vector of length K.

2-87

CPFSK Modulator Baseband

Upsampling the Modulated Signal

This block can output an upsampled version of the modulated signal.
The Samples per symbol parameter is the upsampling factor. It must
be a positive integer. For more information, see “Upsampled Signals
and Rate Changes” in Using the Communications Blockset.

.
DIG IOg E! Function Block Parameters: CPFSK Modulator B x|

Box —LCPFSK Modulator Baseband [mask)] [link]

Modulate the input signal uging the continuous phasze frequency shift keying method.

The input can be either bits or integers. In caze of sample-based bit input, the input
width must equal the number of bits per symbol. In case of frame-bazed bit input, the
input width must be an integer multiple of the number of bits per spmbol. The bits can
be either binary-mapped or Gray-mapped inta symbols.

For zample-based integer input, the input must be a scalar. For frame-based integer
input, the input must be a column vector.

I cage of frame-based input, the width of the output frame equals the product of the
number of symbols and the Samples per symbal value.

I case of sample-bazed input, the output sample time equals the symbal period
divided by the Samples per symbal value.

-y number:

Input type: I Inteqer LI

Symbol zet ordering: I Binary LI
Modulation index:

|5

Fhase offzet [rad):

Jo

Samples per symbal:
Ja

Output data type: I double LI

QK I Cancel Help | Apply |

M-ary number
The size of the alphabet.

Input type
Indicates whether the input consists of integers or groups of bits.

2-88

CPFSK Modulator Baseband

Pair Block
See Also

References

Symbol set ordering
Determines how the block maps each group of input bits to a
corresponding integer. This field is active only when Input type
is set to Bit.

Modulation index
The number of half-revolutions of phase shift due to the latest
symbol when that symbol is the integer 1.

Phase offset (rad)
The initial phase of the output waveform.

Samples per symbol
The number of output samples that the block produces for each
integer or binary word in the input.

Output datatype
The output data type can be single or double.

CPFSK Demodulator Baseband
CPM Modulator Baseband, M-FSK Modulator Baseband

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital
Phase Modulation. New York: Plenum Press, 1986.

2-89

CPM Demodulator Baseband

2-90

Purpose
Library

Description

AL

CPM

Demodulate CPM-modulated data
CPM, in Digital Baseband sublibrary of Modulation

The CPM Demodulator Baseband block demodulates a signal that was
modulated using continuous phase modulation. The input is a baseband
representation of the modulated signal. The M-ary number parameter,
M, is the size of the input alphabet. M must have the form 2¥ for some
positive integer K.

The input can be either a scalar or a frame-based column vector and
must be of type single or double.

The Modulation index, Frequency pulse shape, Rolloff, BT
product, Pulse length, Symbol prehistory, and Phase offset
parameters are as described on the reference page for theCPM
Modulator Baseband block.

Traceback Length and Output Delays

Internally, this block creates a trellis description of the modulation
scheme and uses the Viterbi algorithm. The Traceback length
parameter, D, in this block is the number of trellis branches used to
construct each traceback path. D influences the output delay, which
is the number of zero symbols that precede the first meaningful
demodulated value in the output.

¢ If the input signal is sample-based, then the delay consists of D+1
zero symbols.

e Ifthe input signal is frame-based, then the delay consists of D zero
symbols.

Outputs and Symbol Sets

If the Output type parameter is set to Integer, then the block
produces odd integers between -(M-1) and M-1.

If the Output type parameter is set to Bit, then the block produces
groupings of K bits. Each grouping is called a binary word.

CPM Demodulator Baseband

In binary output mode, the block first maps each input symbol to an
intermediate value as in the integer output mode. The block then maps
the odd integer k to the nonnegative integer (k+M-1)/2. Finally, the
block maps each nonnegative integer to a binary word, using a mapping
that depends on whether the Symbol set ordering parameter is

set to Binary or Gray. For more information about Gray and binary
coding, see “Binary-Valued and Integer-Valued Signals” in Using the
Communications Blockset.

Processing an Upsampled Modulated Signal

The input signal can be an upsampled version of the modulated signal.
The Samples per symbol parameter is the upsampling factor. It must
be a positive integer. For more information, see “Upsampled Signals
and Rate Changes” in Using the Communications Blockset.

2-91

CPM Demodulator Baseband

L]
DIG IOg E! Function Block Parameters: CPM Demodulator Bas: x|

Box —LCPM Demodulator Bazeband [mazk] [link]

Demodulate the CP modulated input signal using the Yiterbi algorithm. Traceback
length is the number of trellis branches that the algorithm wses to construct each
traceback path.

For zample-based input, the input must be a scalar. For frame-bazed input, the input
must be a column vectar.

The output can be either bitz or integers. |n case of bit output, the output width iz an
integer multiple of the number of bits per symbal. The symbols can be either
binary-demapped or Gray-demapped inta bits.

I case of frame-based input, the width of the input frame represents the product of the
number of symbols and the Samples per symbal value.

I case of sample-bazed input, the sample time of the input is the symbal period divided
by the Samples per spmbol value.

-y number:

Olutput bype: I Integer

Ll Lo

Symbaol zet ordering:l Binary

Modulation index:

Jos

Frequency pulse shape:l Fectangular LI
Pulze length [symbol intervals]:

Ji

Symbal prehistory:

Ji

Fhase offzet [rad):

Jo

Samples per symbal:

Ja

Traceback length:

J16

Olutput datatype:l double LI

QK I Cancel Help | Apply |

M-ary number
The size of the alphabet.

Output type
Determines whether the output consists of integers or groups
of bits.

2-92

CPM Demodulator Baseband

Symbol set ordering
Determines how the block maps each integer to a group of output
bits. This field is active only when Qutput type is set to Bit.

Modulation index
The number of half-revolutions of phase shift in the modulated
signal after modulating the latest symbol of 1.

Frequency pulse shape
The type of pulse shaping that the corresponding modulator uses
to smooth the phase transitions of the modulated signal.

Main lobe pulse duration (symbol intervals)
Number of symbol intervals of the largest lobe of the spectral
raised cosine pulse. This field is active only when Frequency
pulse shape is set to Spectral Raised Cosine.

Rolloff
The rolloff factor of the raised cosine filter. This field appears
only when Frequency pulse shape is set to Spectral Raised
Cosine.

BT product
The product of bandwidth and time. This field appears only when
Frequency pulse shape is set to Gaussian.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
The data symbols used by the modulator before the start of the
simulation.

Phase offset (rad)
The initial phase of the modulated waveform.

Samples per symbol
The number of input samples that represent each modulated
symbol.

2-93

CPM Demodulator Baseband

2-94

Pair Block
See Also

References

Traceback length
The number of trellis branches that the Viterbi Decoder block
uses to construct each traceback path.

Output datatype
The output data type can be boolean, int8, int16, int32, or
double.

CPM Modulator Baseband

CPFSK Demodulator Baseband, GMSK Demodulator Baseband, MSK
Demodulator Baseband, Viterbi Decoder

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital
Phase Modulation. New York: Plenum Press, 1986.

CPM Modulator Baseband

Purpose
Library

Description

LI

CPM

Modulate using continuous phase modulation
CPM, in Digital Baseband sublibrary of Modulation

The CPM Modulator Baseband block modulates using continuous phase
modulation. The output is a baseband representation of the modulated
signal. The M-ary number parameter, M, is the size of the input
alphabet. M must have the form 2 for some positive integer K.

Continuous phase modulation uses pulse shaping to smooth the phase
transitions of the modulated signal. Using the Frequency pulse
shape parameter, you can choose these types of pulse shapes:

® Rectangular
® Raised Cosine
® Spectral Raised Cosine

This option requires an additional parameter, Rolloff. The Rolloff
parameter, which affects the spectrum of the pulse, is a scalar
between zero and one.

® Gaussian

This option requires an additional parameter, BT product. The BT
product parameter, which represents bandwidth multiplied by time,
is a nonnegative scalar. It is used to reduce the bandwidth at the
expense of increased intersymbol interference.

® Tamed FM (tamed frequency modulation)

For the exact definitions of these pulse shapes, see the work by
Anderson, Aulin, and Sundberg among the references listed below.
Each pulse shape has a correponding pulse duration. The Pulse length
parameter measures this quantity in symbol intervals.

The Modulation index parameter times n radians is the phase shift
due to the latest symbol when that symbol is the integer 1. The Phase
offset parameter is the initial phase of the output waveform, measured
in radians.

2-95

CPM Modulator Baseband

2-96

The Symbol prehistory parameter is a scalar or vector that specifies
the data symbols used before the start of the simulation, in reverse
chronological order. If it is a vector, then its length must be one less
than the Pulse length parameter.

Inputs and Symbol Sets

If the Input type parameter is set to Integer, then the block accepts
odd integers between -(M-1) and M-1.

If the Input type parameter is set to Bit, then the block accepts
groupings of K bits. Each grouping is called a binary word. The input
vector length must be an integer multiple of K.

In binary input mode, the block maps each binary word to an integer
between 0 and M-1, using a mapping that depends on whether the
Symbol set ordering parameter is set to Binary or Gray. The block
then maps the integer k to the intermediate value 2k-(M-1) and proceeds
as in the integer input mode. For more information, see “Binary-Valued
and Integer-Valued Signals” in Using the Communications Blockset.

The input can be either a scalar or a frame-based column vector. If
Input type is Bit, then the input can also be a vector of length K.

Upsampling the Modulated Signal

This block can output an upsampled version of the modulated signal.
The Samples per symbol parameter is the upsampling factor. It must
be a positive integer. For more information, see “Upsampled Signals
and Rate Changes” in Using the Communications Blockset.

CPM Modulator Baseband

Dialog
Box

ZJFunction Block Parameters: CPM Modulator Baseba

—LCPM Modulator Baseband [mask] [link]

Output the complex envelope representation of the selected continuous phase
modulation.

The input can be either bits or integers. In caze of sample-based bit input, the input
width must equal the number of bits per symbol. In case of frame-bazed bit input, the
input width must be an integer multiple of the number of bits per spmbol. The bits can
be either binary-mapped or Gray-mapped inta symbols.

For zample-based integer input, the input must be a scalar. For frame-based integer
input, the input must be a column vector.

I cage of frame-based input, the width of the output frame equals the product of the
number of symbols and the Samples per symbal value.

I case of sample-bazed input, the output sample time equals the symbal period
divided by the Samples per symbal value.

The Symbol prehistary parameter is the data symbol(s] uzed before the start of the
simulation.

-y number:

Input type: I Integer

Ll L«

Symbaol zet ordering:l Binary

Modulation index:

Jos

Frequency pulse shape:l Fectangular LI

Pulze length [symbol intervals]:

Ji

Symbal prehistory:

Ji
Fhase offzet [rad):
Jo
Samples per symbal:
Ja

Output data type: I double LI

QK I Cancel Help | Apply

M-ary number
The size of the alphabet.

Input type

Indicates whether the input consists of integers or groups of bits.

2-97

CPM Modulator Baseband

Symbol set ordering
Determines how the block maps each group of input bits to a
corresponding integer. This field is active only when Input type
is set to Bit.

Modulation index
The number of half-revolutions of phase shift due to the latest
symbol when that symbol is the integer 1.

Frequency pulse shape
The type of pulse shaping that the block uses to smooth the phase
transitions of the modulated signal.

Main lobe pulse duration (symbol intervals)
Number of symbol intervals of the largest lobe of the spectral
raised cosine pulse. This field is active only when Frequency
pulse shape is set to Spectral Raised Cosine.

Rolloff
The rolloff factor of the raised cosine filter. This field appears
only when Frequency pulse shape is set to Spectral Raised
Cosine.

BT product
The product of bandwidth and time. This field appears only when
Frequency pulse shape is set to Gaussian.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
The data symbols used before the start of the simulation, in
reverse chronological order.

Phase offset (rad)
The initial phase of the output waveform.

Samples per symbol
The number of output samples that the block produces for each
integer or binary word in the input.

2-98

CPM Modulator Baseband

Pair Block
See Also

References

Output data type
This block supports double and single data types.

CPM Demodulator Baseband

CPFSK Modulator Baseband, GMSK Modulator Baseband, MSK
Modulator Baseband

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital
Phase Modulation. New York: Plenum Press, 1986.

2-99

CPM Phase Recovery

Purpose

Library

Description

2-100

CPM Sia
Phase Recovary o,

Recover carrier phase using 2P-Power method
Carrier Phase Recovery sublibrary of Synchronization

The CPM Phase Recovery block recovers the carrier phase of the input
signal using the 2P-Power method. This feedforward, non-data-aided,
clock-aided method is suitable for systems that use these types of
baseband modulation: continuous phase modulation (CPM), minimum
shift keying (MSK), continuous phase frequency shift keying (CPFSK),
and Gaussian minimum shift keying (GMSK). This block is suitable for
use with blocks in the Baseband Continuous Phase Modulation library.

If you express the modulation index for CPM as a proper fraction,
h = K/ P, then P is the number to which the name "2P-Power" refers.

The 2P-Power method assumes that the carrier phase is constant over
a series of consecutive symbols, and returns an estimate of the carrier
phase for the series. The Observation interval parameter is the
number of symbols for which the carrier phase is assumed constant.
This number must be an integer multiple of the input signal’s vector
length.

Input and Outputs

The input signal must be a frame-based column vector or a sample-based
scalar of type double or single. The input signal represents a baseband
signal at the symbol rate, so it must be complex-valued and must
contain one sample per symbol.

The outputs are as follows:

® The output port labeled Sig gives the result of rotating the input
signal counterclockwise, where the amount of rotation equals the
carrier phase estimate. The Sig output is thus a corrected version
of the input signal, and has the same sample time and vector size
as the input signal.

® The output port labeled Ph outputs the carrier phase estimate, in
degrees, for all symbols in the observation interval. The Ph output is
a scalar signal.

CPM Phase Recovery

Dialog
Box

Note Because the block internally computes the argument of

a complex number, the carrier phase estimate has an inherent
ambiguity. The carrier phase estimate is between -90/P and 90/P
degrees and might differ from the actual carrier phase by an integer
multiple of 180/P degrees.

Delays and Latency

The block’s algorithm requires it to collect symbols during a period of
length Observation interval before computing a single estimate of the
carrier phase. Therefore, each estimate is delayed by Observation
interval symbols and the corrected signal has a latency of Observation
interval symbols, relative to the input signal.

ElBlock Parameters: CPM Phase Recovery 2=l

—LCPM Phase Recovery [maszk)]

Fiecover the carrier phaze uzing the 2P-Power method. This non-data-aided,
clock-aided feedforward method iz suitable for full rezponse CPM signals.

The parameter P is the: denominator of the modulation index [h=K./P] when expressed
az a proper fraction. The observation interval parameter must be an integer multiple of
the input signal vectar length.

=
F

F:

8

Observation interval [zpmbols]):
J10a

Ok Lancel Help Apply

The denominator of the modulation index for CPM (h = K/ P)
when expressed as a proper fraction.

Observation interval
The number of symbols for which the carrier phase is assumed

constant.

2-101

CPM Phase Recovery

Algorithm

References

See Also

2-102

If the symbols occurring during the observation interval are x(1), x(2),
x(3),..., x(L), then the resulting carrier phase estimate is

L gl S 2P
2p 8 &

where the arg function returns values between -180 degrees and 180
degrees.

[1] Mengali, Umberto, and Aldo N. D’Andrea, Synchronization
Techniques for Digital Receivers, New York, Plenum Press, 1997.

M-PSK Phase Recovery, CPM Modulator Baseband

CRC-N Generator

Purpose

Library

Description

CRC-M
Generator

Generate CRC bits according to CRC method and append to input data

frames

CRC sublibrary of Error Detection and Correction

The CRC-N Generator block generates cyclic redundancy code (CRC)
bits for each input data frame and appends them to the frame. The
CRC-N Generator block is a simplified version of the General CRC
Generator block. With the CRC-N Generator block, you can select the
generator polynomial for the CRC algorithm from a list of commonly
used polynomials, given in the CRC-N method field in the block’s
dialog. N is degree of the generator polynomial. The table below lists
the options for the generator polynomial.

CRC Method | Generator Polynomial Number of Bits

CRC-32 x324x 264 x23 4 x 224 x 164 x 124 x11 32
+x0x8 x4 xP x4 xex+1

CRC-24 x2 x4 x4 x124 x84 1 24

CRC-16 x164x154x2+1 16

Reversed xBxix+1 16

CRC-16

CRC-8 x+x04xt x4 1

CRC+4 x4 ex2ex+1 4

You specify the initial state of the internal shift register using the
Initial states parameter. You specify the number of checksums that
the block calculates for each input frame using the Checksums per
frame parameter. For more detailed information, see the reference
page for the General CRC Generator block.

This block supports double and boolean data types. The output data
type is inherited from the input.

2-103

CRC-N Generator

Signal Attributes

The General CRC Generator block has one input port and one output
port. Both ports allow frame based binary column vectors only.

.
Dla Iog ElBlock Parameters: CRC-N Generator 2=l
—LCRC-M Generator [maszk]
Box N
Generate CRLC bitz according to the selected CRC method and append them ta the

input data frames. The CRC method uzes a pre-defined CRC-M polynomial where M iz
the number of bits in the checksum.

The initial states parameter must be a binary scalar or vector of length equal to M.

The input must be a binary frame-bazed column vectar.

=
F

CRC method: [{mz{el=
Initial States:
[

Checksums per frame:

Jh

Ok | Lancel Help Apply

CRC-N method
The generator polynomial for the CRC algorithm.

Initial states
A binary scalar or a binary row vector of length equal to the

degree of the generator polynomial, specifying the initial state of
the internal shift register.

Checksums per frame
A positive integer specifying the number of checksums the block

calculates for each input frame.
Algorithm For a description of the CRC algorithm as implemented by this block,

see “Cyclic Redundancy Check Coding” in Using the Communications
Blockset.

2-104

CRC-N Generator
|

Schematic -
of the CRC
Implementation

(® XOR addition

9r1 9r2 94 Y%

Ak
L —®—] 2 f—@®—----—®—] 0 [—® ®

lag_1,a1_9,...,a1,a0}
ldr1 ldrz

do

The above circuit divides the polynomial

alx) = ak_lxk_l + ak_2xk_2 +otaxtag by

-1 -2
gx)=g,_1x" " +g,_ox" " +-+ 81X+ 80 and returns the

r-2

remainder @(x) = dr—lxr_1 tdpgx "+ t+dixt+dy

The input symbols lap_1,ap9,...,09,01,00} are fed into the shift
register one at a time in order of decreasing index. When the last

symbol (%) works its way out of the register (achieved by augmenting
the message with r zeros), the register contains the coefficients of the

remainder polynomial d(x).

This remainder polynomial is the checksum that is appended to the
original message, which is then transmitted.

References [1] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Englewood Cliffs, N.J., Prentice-Hall, 1988.

[2] Wicker, Stephen B., Error Control Systems for Digital
Communication and Storage, Upper Saddle River, N.J., Prentice Hall,
1995.

Pair Block CRC-N Syndrome Detector

2-105

CRC-N Generator

See Also General CRC Generator, General CRC Syndrome Detector

2-106

CRC-N Syndrome Detector

Purpose
Library

Description

CRC-MN
Syndrome
Letector Em

Detect errors in input data frames according to selected CRC method
CRC sublibrary of Error Detection and Correction

The CRC-N Syndrome Detector block computes checksums for its
entire input frame. The block’s second output is a vector whose size is
the number of checksums, and whose entries are 0 if the checksum
computation yields a zero value, and 1 otherwise. The block’s first
output is the set of message words with the checksums removed.

The CRC-N Syndrome Detector block is a simplified version of the
General CRC Syndrome Detector block. You can select the generator
polynomial for the CRC algorithm from a list of commonly used
polynomials, given in the CRC-N method field in the block’s dialog. N
is the degree of the generator polynomial. The reference page for the
CRC-N Generator block contains a list of the options for the generator
polynomial.

The parameter settings for the CRC-N Syndrome Detector block should
match those of the CRC-N Generator block.

You specify the initial state of the internal shift register by the Initial
states parameter. You specify the number of checksums that the
block calculates for each input frame by the Checksums per frame
parameter. For more detailed information, see the reference page for
the General CRC Syndrome Detector block.

This block supports double and boolean data types. The output data
type is inherited from the input.

2-107

CRC-N Syndrome Detector

Dialog
Box

Algorithm

References

2-108

EBlock Parameters: CRC-N Syndrome Detector i 2=l

—LCRC-M Syndrome Detector [mazk]

Detect errors in the input data frames according to the selected CRC method. The
CRC method uses a pre-defined CRC-M polynomial where M iz the number of bits in
the checksum.

The first output iz the data frame with the CRC bits removed and the second output
indicates if an eror was detected in the data frame.

The initial states parameter must be a binary scalar or vector of length equal to M.

The input must be a binary frame-based column vector,

=
F

CRC method:

Initial states:
[

Checksums per frame:

Jh

Ok | Lancel Help Apply

CRC-N method
The generator polynomial for the CRC algorithm.

Initial states
A binary scalar or a binary row vector of length equal to the
degree of the generator polynomial, specifying the initial state of
the internal shift register.

Checksums per frame
A positive integer specifying the number of checksums the block
calculates for each input frame.

For a description of the CRC algorithm as implemented by this block,
see “Cyclic Redundancy Check Coding” in Using the Communications
Blockset.

[1] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Englewood Cliffs, N.J., Prentice-Hall, 1988.

CRC-N Syndrome Detector

[2] Wicker, Stephen B., Error Control Systems for Digital
Communication and Storage, Upper Saddle River, N.J., Prentice Hall,

1995.
Pair Block CRC-N Generator
See Also General CRC Generator, General CRC Syndrome Detector

2-109

Data Mapper

Purpose Map integer symbols from one coding scheme to another
Library Utility Blocks
Description The Data Mapper block accepts integer inputs and produces integer
outputs. You can select one of four mapping modes: Binary to Gray,
Data Gray to Binary, User Defined, or Straight Through.
Mlapper

The input can be either a scalar, a sample-based vector, or a frame-based
column vector. The block can accept multichannel inputs and allows for
input and output data types of double, single, int32, int16, int8,
uint32, uint16, and uint8. If the input is double or single, then

it must be non-negative in value. Note that although the block will
provide outputs for non-integer valued inputs, the results will likely

be meaningless.

Gray coding is an ordering of binary numbers such that all adjacent
numbers differ by only one bit. However, the inputs and outputs of this
block are integers, not binary vectors. As a result, the first two mapping
modes perform code conversions as follows:

® In the Binary to Gray mode, the output from this block is the
integer equivalent of the Gray code bit representation for the input
integer.

® In the Gray to Binary mode, the output from this block is the
integer position of the binary equivalent of the input integer in a
Gray code ordering.

As an example, the table below shows both the Binary to Gray and
Gray to Binary mappings for integers in the range 0 to 7. In the
Binary to Gray Mode Output column, notice that binary representations
in successive rows differ by exactly one bit. In the Gray to Binary Mode
columns, notice that sorting the rows by Output value creates a Gray
code ordering of Input binary representations.

2-110

Data Mapper

Binary to Gray Mode

Gray to Binary Mode

Input Output Input Output
0 0 (000) 0 (000) 0
1 1001 1(001) 1
2 3 (011) 2 (010) 3
3 2 (010) 3 (011D 2
4 6 (110) 4 (100) 7
5 7(111) 5(101) 6
6 5(101) 6 (110) 4
7 4 (100) 7(111) 5

When you select the User Defined mode, you can use any arbitrary
mapping by providing a vector to specify the output ordering. For
example, the vector [1,5,0,4,2,3] defines the following mapping:

0-1
1-5
2—-0
354
42
553

When you select the Straight Through mode, the output equals the

input.

2-111

Data Mapper

EIFunction Block Parameters: Data Mapper x|

—Data Mapper [mazk] [link]

Map integer symbolz from one coding scheme to another.

The input can be either a scalar, a sample-bazed vector, or a frame-based column
wector.

=
F

Mapping mode: [TETAETETET M -

Symbol zet size [M]:
[

Mapping vectar:

1227645
. Ok I LCancel Help Apply
Dialog
Box
Mapping mode

The type of data mapping that the block performs.

Symbol set size
Symbol set size of M restricts this block’s inputs and outputs to
integers in the range 0 to M-1.

Mapping vector
A vector of length M that contains the integers from 0 to M-1.
The order of the elements of this vector specifies the mapping of
inputs to outputs. This field is active only when Mapping mode
is set to User Defined.

2-112

DBPSK Demodulator Baseband

Purpose
Library

Description

AN

LBEFSK

Dialog
Box

Demodulate DBPSK-modulated data
PM, in Digital Baseband sublibrary of Modulation

The DBPSK Demodulator Baseband block demodulates a signal that
was modulated using the differential binary phase shift keying method.
The input is a baseband representation of the modulated signal.

The input must be a discrete-time complex signal. The block compares
the current symbol to the previous symbol. It maps phase differences of
0 and n+6, respectively, to outputs of 0 and 1, respectively, where 0 is
the Phase rotation parameter. The first element of the block’s output
is the initial condition of zero because there is no previous symbol with
which to compare the first symbol.

The input can be either a scalar or a frame-based column vector. The
block accepts input of data types single and double.

JFunction Block Parameters: DBPSK Demodulato x|

—DEPSE Demodulator Baseband [mask)] [link]

Demodulate the input signal using the differential binary phaze shift keying method.

For zample-based input, the input must be a scalar. For frame-bazed input, the input
must be a column vectar.

=
F

Fhase ratation [rad):
[a
Output data type: | double LI

Ok I Lancel | Help | Lpply |

Phase rotation (rad)
This phase difference between the current and previous modulated
symbols results in an output of zero.

Output data type
For both integer and bit inputs, this block can output the data
types int8, uint8, int16, uint16, int32, uint32, boolean,
single, and double.

2-113

DBPSK Demodulator Baseband

Pair Block DBPSK Modulator Baseband

See Also M-DPSK Demodulator Baseband, DQPSK Demodulator Baseband,
BPSK Demodulator Baseband

2-114

DBPSK Modulator Baseband

Purpose
Library

Description

L

LBEFSK

Dialog
Box

Modulate using differential binary phase shift keying method
PM, in Digital Baseband sublibrary of Modulation

The DBPSK Modulator Baseband block modulates using the differential
binary phase shift keying method. The output is a baseband
representation of the modulated signal.

The input must be a discrete-time binary-valued signal. The input can
be either a scalar or a frame-based column vector. For both integer
and bit inputs, the block can accept the data types int8, uint8, int16,
uint16, int32, uint32, boolean, single, and double. These rules
govern this modulation method when the Phase rotation parameter
is O:

e If the first input bit is 0 or 1, respectively, then the first modulated
symbol is exp(j0) or -exp(j0), respectively.

e If a successive input bit is 0 or 1, respectively, then the modulated
symbol is the previous modulated symbol multiplied by exp(j0) or
-exp(j0), respectively.

ZJFunction Block Parameters: DBPSK Modulator B x|

—DEPSE Modulator Bazeband [maszk] [link]
Modulate the input signal uging the differential binary phaze shift keying method.

For zample-based input, the input must be a scalar. For frame-bazed input, the input
must be a column vectar.

=
F

Fhase ratation [rad):
[a

Output Data type: | double LI

Ok I Lancel | Help | Lpply |

Phase rotation (rad)
The phase difference between the previous and current modulated
symbols when the input is zero.

2-115

DBPSK Modulator Baseband

Output Data type
The output data type can be either single or double. By default,
the block sets this to double.

Pair Block DBPSK Demodulator Baseband

See Also DQPSK Modulator Baseband, BPSK Modulator Baseband

2-116

Deinterlacer

Purpose

Library

Description

a
Leinteracer
E

Dialog
Box

Examples

Pair Block

Distribute elements of input vector alternately between two output
vectors

Sequence Operations

The Deinterlacer block accepts an input vector that has an even number
of elements. The block alternately places the elements in each of two
output vectors. As a result, each output vector size is half the input
vector size. The output vectors have the same complexity and sample
time of the input.

The input can be either a sample-based vector of length two, or a
frame-based column vector whose length is any even integer. The block
can accept the data types int8, uint8, int16, uint16, int32, uint32,
boolean, single, double, and fixed-point. The data types of this output
will be the same as that of the input signal.

This block can be useful for separating in-phase and quadrature
information from a single vector into separate vectors.

EBlock Parameters: Deinterlacer 2=l

Dreinterlacer [mazk)]

Separate the elements of the input signal to generate the output signals. The
odd-numbered elements of the input signal become the first output signal, while the
even-numbered elements of the input signal become the second output signal.

The input can be either a sample-based 2-element vector or frame-bazed colurmmn
wector whose length iz any even integer.

............. g K | Cancel | Help | o |

If the input vector is frame-based with value [1; 5; 2; 6; 3; 7; 4; 8], then
the two output vectors are [1; 2; 3; 4] and [5; 6; 7; 8]. Notice that this is
the inverse of the example on the reference page for the Interlacer block.

If the input vector is frame-based with value [1; 2; 3; 4; 5; 6], then the
two output vectors are [1; 3; 5] and [2; 4; 6].

Interlacer

2-117

Deinterlacer

See Also Demux (Simulink)

2-118

Derepeat

Purpose Reduce sampling rate by averaging consecutive samples
Librclry Sequence Operations
Description The Derepeat block resamples the discrete input at a rate 1/N times the
input sample rate by averaging N consecutive samples. This is one
Derepeat possible inverse of the Repeat block (Signal Processing Blockset). The
i positive integer N is the Derepeat factor parameter in the Derepeat
dialog.

The Initial condition parameter prescribes elements of the output
when it is still too early for the input data to show up in the output. If
the dimensions of the Initial condition parameter match the output
dimensions, then the parameter represents the initial output value. If
Initial condition is a scalar, then it represents the initial value of
each element in the output.

The input can have any shape or frame status. The block can accept the
data types single and double. The data type of the output will be the
same as that of the input signal.

This block will work within a triggered subsystem, as long as it is used
in the single-rate mode.

Sample-Based Operation

If the input is sample-based, then the block assumes that the input is a
vector or matrix whose elements represent samples from independent
channels. The block averages samples from each channel independently
over time. The output period is N times the input period, and the input
and output sizes are identical. The output is delayed by one output
period, and the first output value is the Initial condition value.

Frame-Based Operation

If the input is frame-based, then the block derepeats each frame,
treating distinct channels independently. Each element of the output
is the average of N consecutive elements along a column of the input
matrix. The Derepeat factor must be less than the frame size.

2-119

Derepeat

2-120

The Framing parameter determines how the block adjusts the rate at
the output to accommodate the reduced number of samples. The two
options are:

® Maintain input frame size

The block reduces the sampling rate by using a proportionally
longer frame period at the output port than at the input port. For
derepetition by a factor of N, the output frame period is N times the
input frame period, but the input and output frame sizes are equal.
The output is delayed by one output frame, and the first output frame
is determined only by the Initial condition value.

For example, if a single-channel input with a frame period of 1 second
is derepeated by a factor of 4, then the output has a frame period of
4 seconds. The input and output frame sizes are equal.

® Maintain input frame rate

The block reduces the sampling rate by using a proportionally
smaller frame size than the input. For derepetition by a factor of N,
the output frame size is 1/N times the input frame size, but the input
and output frame rates are equal. When you use this option, the
Initial condition parameter does not apply and the block incurs no
delay, because the input data immediately shows up in the output.

For example, if a single-channel input with 64 elements is derepeated
by a factor of 4, then the output contains 16 elements. The input and
output frame periods are equal.

Derepeat

Dialog
Box

See Also

—Derepeat [mask]

Derepeat by an integer factor. The value of each output sample is the mean value
of M conzecutive input zamples.

=
F

Derepeat factar, M:

Initial condition:

Jo

Framing: I Maintain input frame size LI

Ok | Lancel | Help | Apply

Derepeat factor, N

The number of consecutive input samples to average in order to

produce each output sample.

Initial condition

The value with which to initialize the block.

Framing

For frame-based operation, the method by which to reduce the
amount of data. One method decreases the frame rate while
maintaining frame size, while the other decreases the frame size

while maintaining frame rate.

Repeat (Signal Processing Blockset), Downsample (Signal Processing

Blockset)

2-121

Descrambler

Purpose Descramble input signal
Librclry Sequence Operations
Description The Descrambler block descrambles the input signal, which must be a

scalar or a frame-based column vector. The Descrambler block is the
inverse of theScrambler block. If you use the Scrambler block in the
transmitter, then you should use the Descrambler block in the receiver.

Descrambler

Below is a schematic of the descrambler. All adders and the one
subtracter operate modulo N, where N is the Calculation base
parameter. The input values must be integers between 0 and N-1.

Input data

—--- M-1

2
1 1 Jp2 Jp

1
p
GO

Descrambled dafa

)

m

%

At each time step, the input causes the contents of the registers to shift
sequentially. Each switch in the descrambler is on or off as defined

by the Seramble polynomial parameter. To make the Descrambler
block reverse the operation of the Scrambler block, use the same
Scramble polynomial parameters in both blocks. If there is no signal
delay between the scrambler and the descrambler, then the Initial
states in the two blocks must be the same. See the reference page for
theScrambler block for more information about these parameters.

2-122

Descrambler

Dialog
Box

Pair Block

Z1Block Parameters: Descrambler 2=l

—Descrambler [mask]

Descramble the input scalar or frame-bagzed column data using a linear feedback shift
register whoge configuration iz specified by the Scramble polynomial parameter.

The Scramble polynomial parameter values represent the shift register connections.
Enter these values az either a binary vector or a descending ordered polynomial to
indicate the connection points.

For the binary vector representation the first and lazt elements of the vector must be 1.
For the descending ordered polynomial representation the first element of the vector
must be 0.

P |

Calculation base:
[
Scramble polynomial:
Jni1o1]

Initial states:
[OREE]

Ok I Lancel Help Apply

Calculation base
The calculation base N. The input and output of this block are
integers in the range [0, N-1].

Scramble polynomial
A polynomial that defines the connections in the scrambler.

Initial states
The states of the scrambler’s registers when the simulation starts.

Scrambler

2-123

Differential Decoder

Purpose

Library

Description

2-124

Differantial
Decoder

Decode binary signal using differential coding
Source Coding

The Differential Decoder block decodes the binary input signal. The
output is the logical difference between the present input and the
previous input. More specifically, the block’s input and output are
related by

m(t,) = d(t,) XOR Initial condition parameter value
m(t,) = d(t,) XOR d(t, ;)

where

d is the differentially encoded input.
®* m is the output message.

t, is the kth time step.

XOR is the logical exclusive-or operator.

The input can be either a scalar, a vector, or a frame-based matrix. This
block processes each vector element independently.

Differential Decoder

EJFunction Block Parameters: Differential Decoder x|

— Differential Decoder [mask] [link]

Differentially decode the input data.

The output of this block iz the logical difference between the present input to this
block and the previous input of this block.

The input can be either a scalar, a vector, or a frame-baszed matrix.

Initial condition:

[
. QK Cancel Hel Appl
Dialog | - —
Box
Initial condition
The logical exclusive-or of this value with the initial input value
forms the initial output value.
References [1] Couch, Leon W., 11, Digital and Analog Communication Systems,
Sixth edition, Upper Saddle River, N. J., Prentice Hall, 2001.
Pair Block Differential Encoder

2-125

Differential Encoder

Purpose

Library

Description

2-126

Differantial
Encoder

Encode binary signal using differential coding
Source Coding

The Differential Encoder block encodes the binary input signal. The
output is the logical difference between the present input and the
previous output. More specifically, the input and output are related by

d(ty) = m(t,) XOR Initial condition parameter value
d(t,) = d(t,_;) XOR m(t,)
where

®* m is the input message

® d is the differentially encoded output.

¢ t, is the kth time step.

® XOR is the logical exclusive-or operator.

The input can be either a scalar, a vector, or a frame-based matrix. This
block processes each vector element independently.

Differential Encoder

IFunction Block Parameters: Differential Encoder x|

— Differential Encoder [mazk) (link]

Differentially encode the input data.

The output of this block iz the logical difference between the present input to this
block and the previous output of this block.

The input can be either a scalar, a vector, or a frame-baszed matrix.

Initial condition:

[
. QK Cancel Hel Appl
Dialog | - —
Box
Initial condition
The logical exclusive-or of this value with the initial input value
forms the initial output value.
References [1] Couch, Leon W., 11, Digital and Analog Communication Systems,
Sixth edition, Upper Saddle River, N. J., Prentice Hall, 2001.
Pair Block Differential Decoder

2-127

Discrete-Time Eye Diagram Scope

Purpose
Library

Description

2-128

<=

Display multiple traces of modulated signal
Comm Sinks

The Discrete-Time Eye Diagram Scope block displays multiple traces of
a modulated signal to produce an eye diagram. You can use the block
to reveal the modulation characteristics of the signal, such as pulse
shaping or channel distortions.

The Discrete-Time Eye Diagram Scope block has one input port. The
block accepts signal of type double, single, boolean, base integer, and
fixed-point data types for input, but will cast it as double. The input
signal must be a sample-based scalar in sample-based mode. The input
must be a frame-based column vector or a scalar in frame-based mode.

Marker and Line Styles

The Marker, Line style, and Line color parameters, on the
Rendering Properties panel, control the appearance of the signal
trajectory. The Marker parameter specifies the marker style for points
in the eye diagram. The following table lists some of the available line
markers.

Marker Parameter

Style Symbol Appearance

Plus + y y +
Circle 0 o o
Asterisk * + + +
Point

Cross X

The Line style parameter specifies the style for lines in the eye
diagram. The following lists some of the available line styles.

Discrete-Time Eye Diagram Scope

Line Style

Appearance

Solid

Dashed

Dotted

Dash-dot

The Line color parameter specifies the color of the eye diagram. These
settings plot the signal channels in the following colors (8-bit RGB
equivalents are shown in the center column).

RGB
Color Equivalent | Appearance
Black (0,0,0)
Blue (0,0,255)
Red (2557090)
Green (0,255,0)
Dark (192,0,192)
purple

See the 1ine function in the MATLAB documentation for more
information about the available markers, colors, and line styles.

Recommended Settings

The following table summarizes the recommended parameter settings
for the Discrete-Time Eye Diagram Scope.

2-129

Discrete-Time Eye Diagram Scope

2-130

Parameter

Recommended Setting

Samples per symbol

Same as the Samples per
symbol setting in the modulator
block, or the Interpolation
factor setting in the interpolation
block

Offset (samples)

0 to view the open part of the eye
(Samples per symbol)/2 to view
the closed part of the eye

Symbols per trace

An integer between 1 and 4

Traces displayed

10 times the alphabet size of the
modulator, M

New traces per display

Same as Traces displayed for
greater speed A small positive
integer for best animation

Marker None or a point (.) to see where
the samples are plotted
Line style Solid dash (-)

Line color

Blue (b)

Duplicate points at trace
boundary

Check Duplicate points at
trace boundary for modulations
such as PSK and QAM.

Clear to display the phase trees
for MSK, CPFSK, GFSK, GMSK,
and other continuous phase
modulations.

Color fading

Check Color fading for
animation that resembles an
oscilloscope.

Clear for greater speed and
animation that resembles a plot.

Discrete-Time Eye Diagram Scope

Parameter

Recommended Setting

High quality rendering

Check High quality rendering
for better animation.

Clear for greater speed.

Eye diagram to display

Select In-phase and
Quadrature to view real and
imaginary components.

Select In-phase Only to view
real component only and for
greater speed.

When the input is real and

you choose In-phase and
Quadrature, the quadrature
component of the eye diagram is
Z€ro.

Open at start of simulation

Check Open at start of
simulation to view the signal at
the start of simulation.

Clear to view the signal after
convergence to steady state and
for greater initial speed.

Y-axis minimum

Approximately 10% less than the
expected minimum value of the
signal

Y-axis maximum

Approximately 10% greater than
the expected maximum value of
the signal

Scope Options

The scope title (in the window title bar) is the same as the block title.
You can set the axis scaling by setting the y-axis minimum and y-axis
maximum parameters on the Axes Properties panel.

2-131

Discrete-Time Eye Diagram Scope

In addition to the standard MATLAB figure window menus (File,
Edit, Window, Help), the Vector Scope window has an Axes and
a Channels menu.

The properties listed in the Axes menu apply to all channels. Many

of the parameters in this menu are also accessible through the block
parameter dialog box. These are Autoscale, Show grid, Frame #, and
Save Position. Below are descriptions of the other parameters listed
in the Axes menu:

® Autoscale resizes the y-axis to best fit the vertical range of the data.
The numerical limits selected by the autoscale feature are displayed
in the Minimum Y-limit and Maximum Y-limit parameters in the
parameter dialog box. You can change them by editing those values.

* Show grid - When selected, the scope displays a grid according to
tick marks on the x- and y-axes.

* Frame # - When selected, the scope displays the current frame
number at the bottom of the scope window.

¢ Save Position automatically updates the Scope position
parameter in the Figure properties panel to reflect the scope
window’s current position and size. To make the scope window open
at a particular location on the screen when the simulation runs,
simply drag the window to the desired location, resize it as needed,
and select Save Position.

The properties listed in the Channels menu apply to a particular
channel. The parameters listed in this menu are Style, Marker, and
Color. They correspond to the parameters Line style, Marker, and
Line color, respectively.

You can also access many of these options by right-clicking with the
mouse anywhere on the scope display. The menu that pops up contains
a combination of the options available in both the Axes and Channels
menus.

2-132

Discrete-Time Eye Diagram Scope

Dialog
Box

CBlock Parameters: Discrete-Time Eye Diagra 2=l

Dizcrete-Time Eye Diagram Scope [mazk]

The Digcrete-Time Eye Diagram Scope dizplays multiple traces of a modulated signal
to reveal the modulation characteristics such as pulze shaping, as well as channel
distortions of the signal.

The signal iz divided inta traces with length, 'S amples per symbal' * *Symbols per trace’
starting by skipping 'Offset’ samples at the beginning.

Fendering Properties | Awxes Properties | Figure Properties

Samples per symbal:

|a
Offset [samples]:
Jo
Symbols per trace:
Jh
Traces displayed:
Jao
Mew traces per display:
Jio

Ok I Lancel | Help Apply

Samples per symbol
Number of samples per symbol. Use with Symbols per trace to
determine the number of samples per trace.

Offset (samples)
Nonnegative integer less than the product of Samples per
symbol and Symbols per trace, specifying the number of
samples to omit before plotting the first point. Tunable.

Symbols per trace
Positive integer specifying the number of symbols plotted per
trace.

Traces displayed
Number of traces plotted.

New traces per display
Positive integer less than Traces displayed, specifying the
number of new traces that appear in each display.

2-133

Discrete-Time Eye Diagram Scope

2-134

Flotting Properties Axes Properties | Figure Properties

Markers:

Line style:

Line color:

[

¥ Diuplicate points at trace boundar
¥ Colar fading

¥ High quality rendering

V' Show grid

Markers
The marker for points in the eye diagram. Tunable.

Line style
The line style in the eye diagram. Tunable.

Line color
The line color in the eye diagram. Tunable.

Duplicate points at trace boundary
Check to enable duplicate points at the trace boundary. Clear
to disable.

Color fading
When selected, the points in the eye diagram fade as the interval
of time after they are first plotted increases. Tunable.

High quality rendering
When selected, the block renders a slow, higher-quality picture
with overwrite raster operations. When cleared, the block renders
a fast, lower-quality picture with XOR raster operations. Tunable.

Show grid
Toggles the scope grid on and off. Tunable.

Discrete-Time Eye Diagram Scope

Flotting Properties | Rendering Properties Figure Properties

' awis minimum:
|15
' &z masimunm:
|15

In-phaze *-axiz label:

IIn-phase Amplitude

Quadrature v-axis label:

IQuadrature Amplitude

Y-axis minimum
Minimum signal value the scope displays. Tunable.

Y-axis maximum
Maximum signal value the scope displays. Tunable.

In-phase Y-axis label
Label for y-axis of the in-phase diagram. Tunable.

Quadrature Y-axis label
Label for y-axis of the quadrature diagram. Tunable.

Flotting Properties I Fiendering Properties IAxes Froperties |

V' Open scope at start of simulation

Eye diagram to dizplay: I In-phaze and Quadrature LI
[T Trace rumber

Scope poszition:

Iget[D,'defaultfigureposition'];
Title:
IE ve Diagram

Open scope at start of simulation
When selected, the scope opens at the start of simulation.
When cleared, you must double-click the block after the start of
simulation to open the scope. Tunable.

2-135

Discrete-Time Eye Diagram Scope

Examples

See Also

2-136

Eye diagram to display
Type of eye diagram to display. Choose In-phase and
Quadrature to display real and complex components, or In-phase
Only to display only the real component. Tunable.

Trace number
Displays the number of the current trace in the input sequenced.
Tunable.

Scope position
A four-element vector of the form [left bottom width height]
specifying the position of the scope window. (0,0) is the lower left
corner of the display. Tunable.

Title
Title of eye diagram figure window. Tunable.

For documentation examples that use this block, see “Example: Viewing
a Sinusoid” and “Example: Viewing a Modulated Signal”.

Also, the following Communications Blockset demos illustrate how to
use the Discrete-Time Eye Diagram Scope block:

¢ CPM Phase Tree Example

Filtered Offset QPSK vs. Filtered QPSK

Rayleigh Fading Channel

QPSK vs. MSK

Discrete-Time Scatter Plot Scope, Discrete-Time Signal Trajectory
Scope

Discrete-Time Scatter Plot Scope

Purpose

Library

Description

Display in-phase and quadrature components of modulated signal
constellation

Comm Sinks

The Discrete-Time Scatter Plot Scope block displays scatter plots of a
modulated signal, to reveal the modulation characteristics, such as
pulse shaping or channel distortions of the signal.

The Discrete-Time Scatter Plot Scope block has one input port. The
input signal must be complex. The input signal must be complex.
The block accepts signal of type double, single, base integer, and
fixed-point for input, but will cast it as double. The input signal must
be a sample-based scalar in sample-based mode. The input must be a
frame-based column vector or a scalar in frame-based mode.

See the reference page for the Discrete-Time Signal Trajectory Scope
block to compare the preceding scatter plot with the trajectory of the
same signal. The Discrete-Time Signal Trajectory Scope block connects
the points displayed by the Discrete-Time Scatter Plot Scope block to
display the signal trajectory.

Setting Samples per symbol to 8, increasing Points displayed to
100, and running the model for 100 seconds produces the following
scatter plot.

2-137

Discrete-Time Scatter Plot Scope

2-138

1
* .ot
0’ P oaty
- S DI
+ + +
o 05 S
=
=)
£
£
o 0
=]
™
=
o
8
-0.5 * * +
J R
e
”000; | ’0’ a
-1
-1.4
-14 1 0.4] 0.4 1 15

In-phase Amplitude

Markers and Color

The Markers and Color parameters, on the Rendering Properties
panel, specify the style and color of markers in the scatter plot. For
details on the options for these parameters, see the reference page for
the Discrete-Time Eye Diagram Scope block.

Recommended Settings

The following table summarizes the recommended parameter settings
for the Discrete-Time Scatter Plot Scope.

Discrete-Time Scatter Plot Scope

Parameter

Recommended Setting

Samples per symbol

Same as the Samples per
symbol setting in the modulator
block, or the Interpolation
factor setting in the interpolation
block

Points displayed

10 times the alphabet size of the
modulator

New points per display

Same as Points displayed for
greater speed

A small positive integer for best
animation

Line style

Solid dash (-)

Line color

Blue (b)

Color fading

Check Color fading for
animation that resembles an
oscilloscope.

Clear for greater speed and
animation that resembles a plot.

High quality rendering

Check High quality rendering
for higher quality rendering.

Clear for greater speed.

Open at start of simulation

Check Open at start of
simulation to view the signal at
the start of simulation.

Clear to view the signal after
convergence to steady state and
for greater initial speed.

2-139

Discrete-Time Scatter Plot Scope

Parameter Recommended Setting
X-axis minimum Approximately 10% less than the
expected minimum value of the
signal
X-axis maximum Approximately 10% greater than
the expected maximum value of
the signal
Dialog 21
Box Dizcrete-Time Scatter Flot Scope [mazk)]

The Digcrete-Time Scatter Plot Scope is used to display a modulated signal
constellation in itz signal space by plotting the In-phaze component versus the
Buadrature component.

Uze with 'Samples per Symbol' zet to 1 to view signals after detection or for signals
without overzampling. For oversampled signals, the input is decimated by 'Samples per
zymbaol' skipping ‘Offzet’ initial zamples.

Fendering Properties | Awxes Properties | Figure Properties

Samples per symbal:

Jh
Offset [samples]:
Jo
Foints dizplayed:
Jao

Mew points per display:
Jio

Ok I Lancel | Help Apply

Samples per symbol
Number of samples per symbol.

Offset (samples)
Nonnegative integer less than the number of samples per symbol,
specifying the number of samples to skip before plotting points.

2-140

Discrete-Time Scatter Plot Scope

Points displayed
Total number of points plotted.

New points per display
Number of new points that appear in each display.

Flotting Properties |H IAxes Froperties I Figure Properties I

Markers:

|

Line color:

[

V' Color fading

[+ High quality rendering
¥ Show grid

Markers
Line markers used in the scatter plot. Tunable.

Line color
The line color used in the scatter plot. Tunable.

Color fading
When selected, the points in the scatter plot fade as the interval

of time after they are first plotted increases. Tunable.

High quality rendering
When selected, the block renders a slow, higher-quality picture
with overwrite raster operations. When cleared, the block renders

a fast, lower-quality picture with XOR raster operations. Tunable.

Show grid
Toggles the scope grid on and off. Tunable.

2-141

Discrete-Time Scatter Plot Scope

2-142

Flotting Properties | Rendering Properties

F-awiz minimurm:

Figure Properties

|15

F-awis masimnm:

|15

*r-awis minimum:

|15

' &z masimunm:

|15

In-phaze ¥-axiz label:

IIn-phase Amplitude

Quadrature v-axis label:

IQuadrature Amplitude

X-axis minimum

Minimum value the scope displays on the x-axis. Tunable.

X-axis maximum

Maximum value the scope displays on the x-axis. Tunable.

Y-axis minimum

Minimum signal value the scope displays on the y-axis. Tunable.

Y-axis maximum

Maximum signal value the scope displays on the y-axis. Tunable.

In-phase X-axis label
Label for x-axis. Tunable.

Quadrature Y-axis label
Label for y-axis. Tunable.

Discrete-Time Scatter Plot Scope

Examples

Flotting Properties | Fendering Properties | Axes Properties

V' Open scope at start of simulation
[~ Puirt rumber

Scope poszition:

Iget[D,'defaultfigureposition'];
Title:
IScatter Plot

Open at start of simulation
When selected, the scope opens at the start of simulation.
When cleared, you must double-click the block after the start of
simulation to open the scope.

Point number

Displays the number of the current point in the input sequence.
Tunable.

Scope position
A four-element vector of the form [left bottom width height]
specifying the position of the scope window. (0,0) is the lower left
corner of the display. Tunable.

Title
Title of scatter plot. Tunable.

For documentation examples that use this block, see “Example: Viewing
a Sinusoid” and “Example: Viewing a Modulated Signal”.

The following demos in the Communications Blockset illustrate how to
use the Discrete-Time Scatter Plot Scope block:

® Digital Video Broadcasting Model
® DS Spread Spectrum Example

2-143

Discrete-Time Scatter Plot Scope

¢ HiperLAN/2
¢ Phase Noise Effects in 256 QAM
¢ Rayleigh Fading Channel

See Also Discrete-Time Eye Diagram Scope, Discrete-Time Signal Trajectory
Scope, Real-Imag to Complex

2-144

Discrete-Time Signal Trajectory Scope

Purpose

Library

Description

&

Plot modulated signal’s in-phase component versus its quadrature
component

Comm Sinks

The Discrete-Time Signal Trajectory Scope displays the trajectory of a
modulated signal in its signal space by plotting its in-phase component
versus its quadrature component.

The Discrete-Time Signal Trajectory Scope block has one input port.
The input signal must be complex. The block accepts signal of type
double, single, base integer, and fixed-point for input, but will cast
it as double. The input signal must be a sample-based scalar in
sample-based mode. The input must be a frame-based column vector
or a scalar in frame-based mode.

Line Style and Color

The Line style and Line color parameters on the Rendering
Properties panel control the appearance of the signal trajectory.
The Line style parameter specifies the style for lines in the signal
trajectory. For details on the options for these parameters, see the
reference page for the Discrete-Time Eye Diagram Scope block.

Recommended Settings

The following table summarizes the recommended parameter settings
for the Discrete-Time Signal Trajectory Scope.

Parameter Recommended Setting

Samples per symbol Same as the Samples per
symbol setting in the modulator
block, or the Interpolation
factor used in the interpolation
block

Symbols displayed 10 times the alphabet size of the
modulator, M

2-145

Discrete-Time Signal Trajectory Scope

2-146

Parameter

Recommended Setting

New symbols per display

Same as Symbols displayed for
greater speed

A small positive integer for best
animation

Line style

Solid dash (-)

Line color

Blue (b)

Color fading

Check Color fading for
animation that resembles an
oscilloscope.

Clear for greater speed and
animation that resembles a plot.

High quality rendering

Check High quality rendering
for higher quality rendering.

Clear for greater speed.

Open at start of simulation

Check Open at start of
simulation to view the signal at
the start of simulation.

Clear to view the signal after
convergence to steady state and
for greater initial speed.

Y-axis minimum

Approximately 10% less than the
expected minimum value of the
signal

Y-axis maximum

Approximately 10% greater than
the expected maximum value of
the signal

Discrete-Time Signal Trajectory Scope

L]
DIG IOg E! Block Parameters: Discrete-Time Signal Traject 2=l
Box Dizcrete-Time Signal Trajectory Scope [mazk]

The Digcrete-Time Signal Trajectory Scope is uged to display a modulated signal
constellation in itz signal space by plotting the In-phaze component versus the
Buadrature component.

Fendering Properties | Awxes Properties | Figure Properties
Samples per symbal:

|a
Symbols displayed:
Jao

Mew symbols per dizplay:
Jio

Ok I Lancel | Help Apply

Samples per symbol
Number of samples per symbol.

Symbols displayed
Total number of symbols plotted.

New symbols per display
Number of new symbols that appear in each display.

2-147

Discrete-Time Signal Trajectory Scope

Axes Properties | Figure Properties

Platting Properties H
Line style:
|.
Line color:
|b
V' Color fading
[+ High quality rendering
¥ Show grid

Line markers
The line markers used in the signal trajectory. Tunable.

Line color
The line color used in the signal trajectory. Tunable.

Color fading
When selected, the points in the signal trajectory fade as the
interval of time after they are first plotted increases. Tunable.

High quality rendering
When selected, the block renders a slow, higher-quality picture
with overwrite raster operations. When cleared, the block renders
a fast, lower-quality picture with XOR raster operations. Tunable.

Show grid
Toggles the scope grid on and off. Tunable.

2-148

Discrete-Time Signal Trajectory Scope

Flotting Properties | Rendering Properties

F-awiz minimurm:

Figure Properties

|15

F-awis masimnm:

|15

*r-awis minimum:

|15

' &z masimunm:

|15

In-phaze ¥-axiz label:

IIn-phase Amplitude

Quadrature v-axis label:

|Quadrature Amplitude

X-axis minimum

Minimum value the scope displays on the x-axis. Tunable.

X-axis maximum

Maximum value the scope displays on the x-axis. Tunable.

Y-axis minimum

Minimum signal value the scope displays on the y-axis. Tunable.

Y-axis maximum

Maximum signal value the scope display on the y-axis. Tunable.

In-phase X-axis label
Label for x-axis. Tunable.

Quadrature Y-axis label
Label for y-axis. Tunable.

2-149

Discrete-Time Signal Trajectory Scope

Examples

2-150

Flotting Properties | Fendering Properties | Axes Properties

IV Open scope at start of simulation
™ Symbol number

Scope poszition:

Iget[D,'defaultfigureposition'];
Title:
ISignaI Trajectory

Open at start of simulation
When selected, the scope opens at the start of simulation.
When cleared, you must double-click the block after the start of
simulation to open the scope. Tunable

Symbol number
Displays the number of the current symbol in the input sequence.
Tunable.

Scope position
A four-element vector of the form [left bottom width height]
specifying the position of the scope window. (0,0) is the lower left
corner of the display. Tunable.

Title
Title of signal trajectory plot. Tunable.

For documentation examples that use this block, see “Example: Viewing
a Sinusoid” and “Example: Viewing a Modulated Signal”.

Also, the following demos in the Communications Blockset illustrate
how to use the Discrete-Time Signal Trajectory Scope:

¢ Filtered Offset QPSK vs. Filtered QPSK

¢ GMSK vs. MSK

Discrete-Time Signal Trajectory Scope

See Also Discrete-Time Eye Diagram Scope, Discrete-Time Scatter Plot Scope

2-151

Discrete-Time VCO

Purpose

Library

Description

2-152

Discrete-Time
WwCo

Implement voltage-controlled oscillator in discrete time
Components sublibrary of Synchronization

The Discrete-Time VCO (voltage-controlled oscillator) block generates a
signal whose frequency shift from the Quiescent frequency parameter
is proportional to the input signal. The input signal is interpreted as a
voltage. If the input signal is u(¢), then the output signal is

y(@t) = A, cos(2nfct + 21k, J.é w(tdt+ (p))

where A is the Output amplitude, f, is the Quiescent frequency, %,
is the Input sensitivity, and ¢ is the Initial phase

This block uses a discrete-time integrator to interpret the equation
above.

The input and output signals can be scalars of data type single or
double. The data type of the output will be the same as that of the
input signal.

Discrete-Time VCO

Dialog
Box

See Also

Z1Block Parameters: Discrete-Time ¥CO 2=l

—Discrete-Time YCO [mask)

Generate a discrete-time output zsignal whoze frequency changes in responge to the
amplitude variations of the input gignal. The input signal must be a scalar.

Output amplitude [4]:
Quiescent frequency [Hz):
J10

Input sensitivity [HzAf):

Jh

Initial phaze [rad]:

Jo

Sample time [z]:

|

Ok I Lancel Help Apply

Output amplitude
The amplitude of the output.

Quiescent frequency (Hz)
The frequency of the oscillator output when the input signal is
Zero.

Input sensitivity
This value scales the input voltage and, consequently, the shift
from the Quiescent frequency value. The units of Input
sensitivity are Hertz per volt.

Initial phase (rad)
The initial phase of the oscillator in radians.

Sample time
The calculation sample time.

Continuous-Time VCO

2-153

DQPSK Demodulator Baseband

Purpose

Library

Description

2-154

AL

LQPsk

Demodulate DQPSK-modulated data
PM, in Digital Baseband sublibrary of Modulation

The DQPSK Demodulator Baseband block demodulates a signal that
was modulated using the differential quaternary phase shift keying
method. The input is a baseband representation of the modulated
signal.

The input must be a discrete-time complex signal. The output depends
on the phase difference between the current symbol and the previous
symbol. The first integer (or binary pair, if the Output type parameter
is set to Bit) in the block’s output is the initial condition of zero because
there is no previous symbol.

The input can be either a scalar or a frame-based column vector. The
block accepts the input data types single and double.

Outputs and Constellation Types
If the Output type parameter is set to Integer, then the block maps a
phase difference of

0 + Tm/2

to m, where 0 is the Phase rotation parameter and mis 0, 1, 2, or 3.

If the Output type parameter is set to Bit, then the output contains
pairs of binary values. The reference page for theDQPSK Modulator
Baseband block shows which phase differences map to each binary pair,
for the cases when the Constellation ordering parameter is either
Binary or Gray.

DQPSK Demodulator Baseband

Dialog
Box

Pair Block
See Also

EJFunction Block Parameters: DOPSK Demodulate x|

—DAPSK Demodulator Bazeband [mask] [link]

Demodulate the input signal using the differential quatemary phaze shift keying
methad.

For zample-based input, the input must be a scalar. For frame-bazed input, the input
must be a column vectar.

The output can be either bitz or integers. |n case of bit output, the output width iz an
integer multiple of bwo.

The symbols can be either binary-demapped or Gray-demapped.

=
F

Qutput type:

Constellation ordering: | Binary LI
Fhase ratation [rad):

pisd

Output data type: | double LI

Ok I Lancel Help | Lpply |

Output type
Determines whether the output consists of integers or pairs of bits.

Constellation ordering
Determines how the block maps each integer to a pair of output
bits. This field is active only when Output type is set to Bit.

Phase rotation (rad)
This phase difference between the current and previous modulated
symbols results in an output of zero.

Output data type
For integer outputs, this block can output the data types int8,
uint8, int16, uint16, int32, uint32, single, and double. For
bit outputs, output can be int8, uint8, int16, uint16, int32,
uint32, boolean, single, or double.

DQPSK Modulator Baseband

M-DPSK Demodulator Baseband, DBPSK Demodulator Baseband,
QPSK Demodulator Baseband

2-155

DQPSK Modulator Baseband

Purpose

Library

Description

2-156

L

LQPsk

Modulate using differential quaternary phase shift keying method
PM, in Digital Baseband sublibrary of Modulation

The DQPSK Modulator Baseband block modulates using the differential
quaternary phase shift keying method. The output is a baseband
representation of the modulated signal.

The input must be a discrete-time signal. For integer inputs, the block
can accept the data types int8, uint8, int16, uint16, int32, uint32,
single, and double. For bit inputs, the block can accept int8, uint8,
int16, uint16, int32, uint32, boolean, single, and double.

Inputs and Constellation Types

If the Input type parameter is set to Integer, then valid input values
are 0, 1, 2, and 3. In this case, the input can be either a scalar or a
frame-based column vector. If the first input is m, then the modulated
symbol is

exp(jo + jrm/2)

where 6 is the Phase rotation parameter. If a successive input is m,
then the modulated symbol is the previous modulated symbol multiplied
by exp(jO + jmm/2).

If the Input type parameter is set to Bit, then the input contains pairs
of binary values. The input can be either a vector of length two or a
frame-based column vector whose length is an even integer. The figure
below shows the complex numbers by which the block multiples the
previous symbol to compute the current symbol, depending on whether
the Constellation ordering parameter is set to Binary or Gray. The
figure assumes that the Phase rotation parameter is set to pi/4; in
other cases, the two schematics would be rotated accordingly.

DQPSK Modulator Baseband

Binary Gray

I I
I I
L] ! L] (] ! [
01 I 00 01 I 00
I I
I I

+
+

1 1
1 1
I I
! ! *10
I I
I I

The figure below shows the signal constellation for the DQPSK
modulation method when the Phase rotation parameter is n/4. The
arrows indicate the four possible transitions from each symbol to the
next symbol. The Binary and Gray options determine which transition
is associated with each pair of input values.

I
®

® (onstellation point

<— Transition o next point

2-157

DQPSK Modulator Baseband

Dialog
Box

Pair Block

2-158

More generally, if the Phase rotation parameter has the form n/k for
some integer k, then the signal constellation has 2k points.

JFunction Block Parameters: DQPSK Modulator B x|

—DRPSK Modulatar Baseband [mask] (link)

Modulate the input signal uging the differential quaternary phase shift keying method.

The input can be either bits or integers. In caze of sample-based bit input, the input
width must be two. In case of frame-based bit input, the input width must be an integer
multiple of bwo.

For zample-based integer input, the input must be a scalar. For frame-based integer
input, the input must be a column vector.

The input can be either binary-mapped or Gray-mapped into spmbols.

=
F

Input type: g
Constellation ordering: | Binary LI
Fhase ratation [rad):
pifd
Output Data type: | double LI
ak. I Caneel Help | Apply |
Input type

Indicates whether the input consists of integers or pairs of bits.

Constellation ordering
Determines how the block maps each pair of input bits to a
corresponding integer. This field is active only when Input type
is set to Bit.

Phase rotation (rad)
The phase difference between the previous and current modulated
symbols when the input is zero.

Output Data type
The output data type can be either single or double. By default,
the block sets this to double.

DQPSK Demodulator Baseband

DQPSK Modulator Baseband
|

See Also M-DPSK Modulator Baseband, DBPSK Modulator Baseband, QPSK
Modulator Baseband

2-159

DSB AM Demodulator Passband

Purpose

Library

Description

2-160

LT T

LB A

Demodulate DSB-AM-modulated data
Analog Passband Modulation, in Modulation

The DSB AM Demodulator Passband block demodulates a signal that
was modulated using double-sideband amplitude modulation. The
block uses the envelope detection method. The input is a passband
representation of the modulated signal. Both the input and output
signals are real sample-based scalar signals.

In the course of demodulating, this block uses a filter whose order,
coefficients, passband ripple and stopband ripple are described by their
respective lowpass filter parameters.

Typically, an appropriate Carrier frequency value is much higher
than the highest frequency of the input signal. By the Nyquist sampling
theorem, the reciprocal of the model’s sample time (defined by the
model’s signal source) must exceed twice the Carrier frequency
parameter.

This block works only with real inputs of type double. This block is not
suited to be placed inside a triggered subsystem.

DSB AM Demodulator Passband

L]
Dla Iog E! Function Block Parameters: DSB AM Demodulator F ll
—DSE Ak Demodulator Passband [mask] [link]
Block)

Demodulate a double-sideband amplitude modulated signal. The input signal must be a
zample-bazed scalar. The output is a 1-0 sample-based scalar.

=
F

Input signal offset:
Carrier frequency [Hz):
Ja00

Initial phase [rad);

Jo

Lowpass filker design method:l Butterwarth LI
Filter order:

J4

Cutoff frequency [Hz]:

Ja00

QK I Cancel Help Apply

Input signal offset
The same as the Input signal offset parameter in the
corresponding DSB AM Modulator Passband block.

Carrier frequency (Hz)
The frequency of the carrier in the corresponding DSB AM
Modulator Passband block.

Initial phase (rad)
The initial phase of the carrier in radians.

Lowpass filter design method
The method used to generate the filter. Available methods are
Butterworth, Chebyshev type I, Chebyshev type II, and Elliptic.

Filter order
The order of the lowpass digital filter specified in the Lowpass
filter design method field .

2-161

DSB AM Demodulator Passband

Cutoff frequency (Hz)
The cutoff frequency of the lowpass digital filter specified in the
Lowpass filter design method field in Hertz.

Passband ripple (dB)
Applies to Chebyshev type I and Elliptic filters only. This is
peak-to-peak ripple in the passband in dB.

Stopband ripple (dB)
Applies to Chebyshev type II and Elliptic filters only. This is the
peak-to-peak ripple in the stopband in dB.

Pair Block DSB AM Modulator Passband

2-162

DSB AM Modulator Passband

Purpose
Library

Description

A

LB A

Modulate using double-sideband amplitude modulation
Analog Passband Modulation, in Modulation

The DSB AM Modulator Passband block modulates using
double-sideband amplitude modulation. The output is a passband
representation of the modulated signal. Both the input and output
signals are real sample-based scalar signals.

If the input is u(¢) as a function of time ¢, then the output is
(w(®) + k) cos(2mf,t +6)
where:

¢ £ is the Input signal offset parameter.

¢ f.is the Carrier frequency parameter.

¢ 0 is the Initial phase parameter.

It is common to set the value of £ to the maximum absolute value of the
negative part of the input signal u(?).

Typically, an appropriate Carrier frequency value is much higher
than the highest frequency of the input signal. By the Nyquist sampling
theorem, the reciprocal of the model’s sample time (defined by the
model’s signal source) must exceed twice the Carrier frequency
parameter.

This block works only with real inputs of type double. This block is not
suited to be placed inside a triggered subsystem.

2-163

DSB AM Modulator Passband

Dialog
Box

Pair Block
See Also

2-164

EJFunction Block Parameters: DSB AM Modulator Pas x|

—DSE Ak Modulator Pazsband [mask)] [link]

Modulate the input signal uging the double-gsideband amplitude modulation method.
The input signal must be a sample-bazed scalar. The output iz a 1-D sample-bazed

=

Input signal offset:

Carrier frequency [Hz):
Ja00

Initial phaze [rad]:

Jo

QK I Cancel Help Apply

Input signal offset
The offset factor k. This value should be greater than or equal to
the absolute value of the minimum of the input signal.

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier.

DSB AM Demodulator Passband

DSBSC AM Modulator Passband, SSB AM Modulator Passband

DSBSC AM Demodulator Passband

Purpose
Library

Description

LT T

LSBESC Al

Demodulate DSBSC-AM-modulated data
Analog Passband Modulation, in Modulation

The DSBSC AM Demodulator Passband block demodulates a signal that
was modulated using double-sideband suppressed-carrier amplitude
modulation. The input is a passband representation of the modulated
signal. Both the input and output signals are real sample-based scalar
signals.

In the course of demodulating, this block uses a filter whose order,
coefficients, passband ripple and stopband ripple are described by the
their respective lowpass filter parameters.

Typically, an appropriate Carrier frequency value is much higher
than the highest frequency of the input signal. By the Nyquist sampling
theorem, the reciprocal of the model’s sample time (defined by the
model’s signal source) must exceed twice the Carrier frequency
parameter.

This block works only with real inputs of type double. This block is not
suited to be placed inside a triggered subsystem.

2-165

DSBSC AM Demodulator Passband

L]
DIG IOg E! Function Block Parameters: DSBSC AM Demod; x|
Box —DSBSC AWM Demodulator Pazsband [mazk] (link]

Demodulate a double-sideband suppreszed carier amplitude modulated signal. The
input zignal must be a sample-based scalar. The output is a 1-0 zample-based scalar.

=

Carrier frequency [Hz):
0]
Initial phase [rad):
Jo

Lowpass filker design method:l Butterwarth LI
Filter order:

J4

Cutoff frequency [Hz]:

Ja00

QK I Cancel | Help Apply

Carrier frequency (Hz)
The carrier frequency in the corresponding DSBSC AM Modulator
Passband block.

Initial phase (rad)
The initial phase of the carrier in radians.

Lowpass filter design method
The method used to generate the filter. Available methods are
Butterworth, Chebyshev type I, Chebyshev type II, and Elliptic.

Filter order
The order of the lowpass digital filter specified in the Lowpass
filter design method field .

Cutoff frequency (Hz)
The cutoff frequency of the lowpass digital filter specified in the
Lowpass filter design method field in Hertz.

Passband Ripple (dB)
Applies to Chebyshev type I and Elliptic filters only. This is
peak-to-peak ripple in the passband in dB.

2-166

DSBSC AM Demodulator Passband
|

Stopband Ripple (dB)
Applies to Chebyshev type II and Elliptic filters only. This is the
peak-to-peak ripple in the stopband in dB.

Pair Block DSBSC AM Modulator Passband

See Also DSB AM Demodulator Passband, SSB AM Demodulator Passband

2-167

DSBSC AM Modulator Passband

Purpose

Library

Description

A

LSBESC Al

Dialog
Box

2-168

Modulate using double-sideband suppressed-carrier amplitude
modulation

Analog Passband Modulation, in Modulation

The DSBSC AM Modulator Passband block modulates using
double-sideband suppressed-carrier amplitude modulation. The output
is a passband representation of the modulated signal. Both the input
and output signals are real sample-based scalar signals.

If the input is u(¢) as a function of time ¢, then the output is
u(t) cos(2nf,t + 6)

where f, is the Carrier frequency parameter and 0 is the Initial
phase parameter.

Typically, an appropriate Carrier frequency value is much higher
than the highest frequency of the input signal. By the Nyquist sampling
theorem, the reciprocal of the model’s sample time (defined by the
model’s signal source) must exceed twice the Carrier frequency
parameter.

This block works only with real inputs of type double. This block is not
suited to be placed inside a triggered subsystem.

EIFunction Block Parameters: DSBSC AM Modulak x|

—DSBSC AM Modulator Pazsband [mask)] [link]

Modulate the input signal uging the double-zsideband suppressed carier amplitude
modulation method. The input signal must be a sample-bazed scalar. The output iz a
1-D zample-based scalar.

=
F

Carrier frequency [Hz):
0]
Initial phase [rad):
Jo

QK I Cancel Help Apply

DSBSC AM Modulator Passband

Pair Block
See Also

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier in radians.

DSBSC AM Demodulator Passband

DSB AM Modulator Passband, SSB AM Modulator Passband

2-169

Early-Late Gate Timing Recovery

Purpose

Library

Description

2-170

Early-Late GateS\‘rm
Timing Recoveny Fh

Recover symbol timing phase using early-late gate method
Timing Phase Recovery sublibrary of Synchronization

The Early-Late Gate Timing Recovery block recovers the symbol timing
phase of the input signal using the early-late gate method. This block
implements a non-data-aided feedback method.

Inputs

By default, the block has one input port. Typically, the input signal is
the output of a receive filter that is matched to the transmitting pulse
shape. For best results, the input signal power should be normalized.
The input must be a scalar or a frame-based column vector. The input
uses N samples to represent each symbol, where N > 1 is the Samples
per symbol parameter. If the input is frame-based, then its vector
length is N*R, where R is a positive integer that indicates the number
of symbols per frame. If the input is sample-based, then its sample time
is 1/N times the underlying symbol period.

If the Reset parameter is set to On nonzero input via port, then the
block has a second input port, labeled Rst. The Rst input determines

when the timing estimation process restarts, and must be a scalar. The
sample time of the Rst input equals the symbol period if the input signal
is sample-based, and the frame period if the input signal is frame-based.

Typically, Samples per symbol is at least 4 and the input signal is
shaped using a raised cosine filter.

Outputs

The block has two output ports, labeled Sym and Ph:

® The Sym output is the result of applying the estimated phase
correction to the input signal. This output is the signal value for each

symbol, which can be used for decision purposes. The values in the
Sym output occur at the symbol rate:

Early-Late Gate Timing Recovery

= If the input signal is a frame-based column vector of length N*R,
then the Sym output is a frame-based column vector of length R
having the same frame period.

= If the input signal is a sample-based scalar with sample time T/N,
then the Sym output is a sample-based scalar with sample time T.

® The Ph output gives the phase estimate for each symbol in the input
signal.

The Ph output contains nonnegative real numbers less than N.
Noninteger values for the phase estimate correspond to interpolated
values that lie between two values of the input signal. The sample
time or frame period of the Ph output is the same as that of the Sym
output.

Note If the Ph output is very close to either zero or Samples per
symbol, or if the actual timing phase offset in your input signal is
very close to zero, then the block’s accuracy might be compromised
by small amounts of noise or jitter. The block works well when the
timing phase offset is significant rather than very close to zero.

Delays

This block incurs a delay of two symbols when the input is frame-based
and three symbols when the input is sample-based.

2-171

Early-Late Gate Timing Recovery

Dialog
Box

Algorithm

2-172

E1Block Parameters: Early-Late Gate Timing Reco 2=l

—Early-Late Gate Timing Recovery [mask)

Fecover the symbal timing phaze uzing the early-late gate method. Thiz
hon-data-aided feedback method is suitable for linear baseband modulations.

The method estimates the symbal timing phase offset for each incoming symbal and
outputs the signal value comesponding to the estimated spmbol zampling ingtant.

The gecond output returns the estimated timing phase offset for each symbol, which
iz a nonnegative real number lezs than M where M iz the number of samples per
zymbaol.

The ermor update gain parameter iz the step size used for updating the successive
phase estimates.

=

Samples per symbal:

Error update gain:
Joos

Reset: I MHone LI

Ok | Lancel | Help | Apply |

Samples per symbol
The number of samples, N, that represent each symbol in the
input signal. This must be greater than 1.

Error update gain
A positive real number representing the step size that the block
uses for updating successive phase estimates. Typically, this
number is less than 1/N, which corresponds to a slowly varying
phase.

Reset
Determines whether and under what circumstances the block
restarts the phase estimation process. Choices are None, Every
frame, and On nonzero input via port. The last option causes
the block to have a second input port, labeled Rst.

This block uses a timing error detector whose result for the kth symbol
is e(k), given by

Early-Late Gate Timing Recovery

References

See Also

e(k) = ar(k) +ag(k)
aI(k) = yI(kT+dk){y1(kT+T/2+dk)—y1(kT—T/2+dk_1)}
aq(®) = yokT +dp){yg(RT + T /2+dy) - yo (kT T/ 2+dj,_1)}

where

* y; and y, are the in-phase and quadrature components, respectively,
of the block’s input signal

e T is the symbol period

¢ d, is the phase estimate for the kth symbol

For more information about the role that e(k) plays in this block’s

algorithm, see “Feedback Methods for Timing Phase Recovery” in Using
the Communications Blockset.

[1] Mengali, Umberto and Aldo N. D’Andrea, Synchronization
Techniques for Digital Receivers, New York, Plenum Press, 1997.

[2] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Englewood Cliffs, N.J., Prentice-Hall, 1988.

Gardner Timing Recovery, Squaring Timing Recovery, Mueller-Muller
Timing Recovery

2-173

Error Rate Calculation

Purpose
Library

Description

T Error Rate
Caleulation
R

2-174

Compute bit error rate or symbol error rate of input data
Comm Sinks

The Error Rate Calculation block compares input data from a
transmitter with input data from a receiver. It calculates the error
rate as a running statistic, by dividing the total number of unequal
pairs of data elements by the total number of input data elements from
one source.

You can use this block to compute either symbol or bit error rate,
because it does not consider the magnitude of the difference between
input data elements. If the inputs are bits, then the block computes the
bit error rate. If the inputs are symbols, then it computes the symbol
error rate.

This block inherits the sample time of its inputs.
Input Data

This block has between two and four input ports, depending on how
you set the dialog parameters. The inports marked Tx and Rx accept
transmitted and received signals, respectively. The Tx and Rx signals
must share the same sampling rate.

The Tx and Rx inputs can be either scalars or frame-based column
vectors of data type int8, uint8, int16, uint16, int32, uint32,
boolean, single, or double. If Tx is a scalar and Rx is a vector, or
vice-versa, then the block compares the scalar with each element of the
vector. (Overall, the block behaves as if you had preprocessed the scalar
signal with the Signal Processing Blockset’s Repeat block using the
Maintain input frame rate option.)

If you check the Reset port box, then an additional inport appears,
labeled Rst. The Rst input must be a sample-based scalar signal (of
type double or boolean) and must have the same sampling rate as the
Tx and Rx signals. When the Rst input is nonzero, the block clears its
error statistics and then computes them anew.

Error Rate Calculation

If you set the Computation mode parameter to Select samples from
port, then an additional inport appears, labeled Sel. The Sel input
indicates which elements of a frame are relevant for the computation;
this is explained further, in the last subbullet below. The Sel input can
be either a sample-based column vector or a one-dimensional vector

of type double.

The guidelines below indicate how you should configure the inputs
and the dialog parameters depending on how you want this block to
interpret your Tx and Rx data.

e Ifboth data signals are scalar, then this block compares the Tx scalar
signal with the Rx scalar signal. You should leave the Computation
mode parameter at its default value, Entire frame.

o Ifboth data signals are vectors, then this block compares some or
all of the Tx and Rx data:

If you set the Computation mode parameter to Entire frame,
then the block compares all of the Tx frame with all of the Rx frame.

If you set the Computation mode parameter to Select samples
from mask, then the Selected samples from frame field appears
in the dialog. This parameter field accepts a vector that lists the
indices of those elements of the Rx frame that you want the block to
consider. For example, to consider only the first and last elements
of a length-six receiver frame, set the Selected samples from
frame parameter to [1 6]. If the Selected samples from frame
vector includes zeros, then the block ignores them.

If you set the Computation mode parameter to Select samples
from port, then an additional input port, labeled Sel, appears on
the block icon. The data at this input port must have the same
format as that of the Selected samples from frame parameter
described above.

¢ If one data signal is a scalar and the other is a vector, then this
block compares the scalar with each entry of the vector. The three
subbullets above are still valid for this mode, except that if Rx is

2-175

Error Rate Calculation

2-176

a scalar, then the phrase “Rx frame” above refers to the vector
expansion of Rx.

Note Simulink requires that input signals have constant length
throughout a simulation. If you choose the Select samples from
port option and want the number of elements in the subframe to
vary during the simulation, then you should pad the Sel signal with
zeros. (See the Zero Pad block in the Signal Processing Blockset.) The
Error Rate Calculation block ignores zeros in the Sel signal.

Output Data

This block produces a vector of length three, whose entries correspond
to:

e The error rate

¢ The total number of errors, that is, comparisons between unequal
elements

® The total number of comparisons that the block made

The block sends this output data to the base MATLAB workspace or to
an output port, depending on how you set the Output data parameter:

¢ Ifyou set the Output data parameter to Workspace and fill in the
Variable name parameter, then that variable in the base MATLAB
workspace contains the current value when the simulation ends.
Pausing the simulation does not cause the block to write interim
data to the variable.

If you plan to use this block along with the Real-Time Workshop, then
you should not use the Workspace option; instead, use the Port option
below and connect the output port to a Simulink To Workspace block.

® Ifyou set the Output data parameter to Port, then an output port
appears. This output port contains the running error statistics.

Error Rate Calculation

Delays

The Receive delay and Computation delay parameters implement
two different types of delays for this block. One is useful when part of
your model causes a lag in the received data, and the other is useful
when you want to ignore the transient behavior of both input signals:

® The Receive delay parameter is the number of samples by which
the received data lags behind the transmitted data. This parameter
tells the block which samples "correspond" to each other and should
be compared. The receive delay persists throughout the simulation.

¢ The Computation delay parameter tells the block to ignore the
specified number of samples at the beginning of the comparison.

If you do not know the receive delay in your model, you can use the
Align Signals block, which automatically compensates for the delay. If
you use the Align Signals block, you should set the Receive delay in
the Error Rate Calculation block to 0.

Alternatively, you can use the Find Delay block to find the value of the
delay, and then set the Receive delay parameter in the Error Rate
Calculation block to that value.

Note The Version 1.4 Error Rate Calculation block considers a vector
input to be a sample, whereas the current block considers a vector input
to be a frame of multiple samples. For vector inputs of length n, a
Receive delay of k in the Version 1.4 block is equivalent to a Receive
delay of k*n in the current block.

If you use the Select samples from mask or Select samples from
port option, then each delay parameter refers to the number of samples
that the block receives, whether the block ultimately ignores some of
them or not.

2-177

Error Rate Calculation

Examples

2-178

Stopping the Simulation Based on Error Statistics

You can configure this block so that its error statistics control the
duration of simulation. This is useful for computing reliable steady-state
error statistics without knowing in advance how long transient effects
might last. To use this mode, check the Stop simulation check box. The
block attempts to run the simulation until it detects Target number
of errors errors. However, the simulation stops before detecting
enough errors if the time reaches the model’s Stop time setting (in the
Configuration Parameters dialog box), if the Error Rate Calculation
block makes Maximum number of symbols comparisons, or if
another block in the model directs the simulation to stop.

To ignore either of the two stopping criteria in this block, set the
corresponding parameter (Target number of errors or Maximum
number of symbols) to Inf. For example, to reach a target number of
errors without stopping the simulation early, set Maximum number
of symbols to Inf and set the model’s Stop time to Inf.

The figure below shows how the block compares pairs of elements
and counts the number of error events. This example assumes that
the sample time of each input signal is 1 second and that the block’s
parameters are as follows:

¢ Receive delay = 2
¢ Computation delay = 0

¢ Computation mode = Entire frame

The input signals are both frame-based column vectors of length three.
However, the schematic arranges each column vector horizontally and
aligns pairs of vectors so as to reflect a receive delay of two samples. At
each time step, the block compares elements of the Rx signal with those
of the Tx signal that appear directly above them in the schematic. For
instance, at time 1, the block compares 2, 4, and 1 from the Rx signal
with 2, 3, and 1 from the Tx signal.

Error Rate Calculation

The values of the first two elements of Rx appear as asterisks because
they do not influence the output. Similarly, the 6 and 5 in the Tx signal
do not influence the output up to time 3, though they would influence
the output at time 4.

In the error rates on the right side of the figure, each numerator at time
t reflects the number of errors when considering the elements of Rx
up through time ¢.

= Error rates as fractions
x 123123177165 ATx Error Rate

. > 0/4-1/4-2/1-4/10—>
Re * = 142 4 1-2 3 373 2 17— Mrx Calculation

t=0 =1

time time

Note: Tx and Rx inputs are frame-based column vectors.

If the block’s Reset port box had been checked and a reset had occurred
at time = 3 seconds, then the last error rate would have been 2/3 instead
of 4/10. This value 2/3 would reflect the comparison of 3, 2, and 1 from
the Rx signal with 7, 7, and 1 from the Tx signal. The figure below
illustrates this scenario.

2-179

Error Rate Calculation

2-180

=0 t=1
A"
2312317716 5—> ATx c R Error rates as fractions
rror Rate
Rx = * 1-2 4 1-233-32 11— X COlCUlOﬁOﬂ > 0/4-1/4-2/1-2/3—>
~ =0 1]
0 0 0 1 » Rst
=0 =1 time fime

Note: Tx and Rx inputs are frame-based column vectors.

Tuning Parameters in an RSim Executable (Real-Time Workshop)

If you use the Real-Time Workshop rapid simulation (RSim) target
to build an RSim executable, then you can tune the Target number
of errors and Maximum number of symbols parameters without
recompiling the model. This is useful for Monte Carlo simulations in
which you run the simulation multiple times (perhaps on multiple
computers) with different amounts of noise.

Error Rate Calculation

E1Block Parameters: Error Rate Calculation 2=l

—Emor Rate Calculation [mazk]

Compute the errar rate of the received data by comparing it to a delayed version of
the tranzmitted data. The block output is a three-element vector congisting of the
erar rate, followed by the number of errors detected and the total number of symbals
compared. This vector can be sent to either the workspace or an output port.

The delays are specified in number of samples, regardless of whether the input is a
zcalar or a vector. The inputs to the 'Tx" and ‘A=’ ports must be sample-bazed scalars
ar frame-based column vectars.

The 'Stop simulation’ option stops the simulation upon detecting a target number of
erors or a maximum number of spmbols, whichever comes first.

P.
Feceive delay:
0]
Computation delay:
Jo

Computation mode: I Entire frame

L 1«

Output data: IW’orkspace
Y ariable name:

IErrorVec:

™ Reset port

I~ Stop simulation

Target number of errors:
Jioa

M aximum number of symbols:
Jeg

ak | Lancel Help Apply

Dialog
Box

Receive delay
Number of samples by which the received data lags behind
the transmitted data. (If Tx or Rx is a vector, then each entry
represents a sample.)

Computation delay
Number of samples that the block should ignore at the beginning
of the comparison.

Computation mode
Either Entire frame, Select samples from mask, or Select
samples from port, depending on whether the block should
consider all or only part of the input frames.

2-181

Error Rate Calculation

See Also

2-182

Selected samples from frame
A vector that lists the indices of the elements of the Rx frame
vector that the block should consider when making comparisons.
This field appears only if Computation mode is set to Select
samples from mask.

Output data
Either Workspace or Port, depending on where you want to send
the output data.

Variable name
Name of variable for the output data vector in the base MATLAB
workspace. This field appears only if Qutput data is set to
Workspace.

Reset port
If you check this box, then an additional input port appears,
labeled Rst.

Stop simulation
If you check this box, then the simulation runs only until this
block detects a specified number of errors or performs a specified
number of comparisons, whichever comes first.

Target number of errors
The simulation stops after detecting this number of errors. This
field is active only if Stop simulation is checked.

Maximum number of symbols
The simulation stops after making this number of comparisons.
This field is active only if Stop simulation is checked.

Align Signals, Find Delay

Find Delay

Purpose

Library

Description

sRef Fing

zDel Delay

delay

Find delay between two signals
Utility Blocks

The Find Delay block finds the delay between a signal and a delayed,
and possibly distorted, version of itself. The block is particularly useful
when you want to compare a transmitted and received signal to find the
bit error rate, but do not know the delay in the received signal. See
“Computing Delays” for more information about signal delays.

The input port labeled sRef receives the original signal, while the input
port labeled sDel receives the delayed version of the signal. The two
input signals must have the same sample times.

The output port labeled delay outputs the delay in units of samples. If
you select Include "change signal" output port, then an output
port labeled chg appears. The chg output port outputs 1 when there is a
change from the delay computed at the previous sample, and 0 when
there is no change. The output ports output signals of type double for
double inputs, and uint32 for inputs of other non-double data types.

The block’s Correlation window length parameter specifies

how many samples of the signals the block uses to calculate the
cross-correlation. The delay output is a nonnegative integer less than
the Correlation window length.

As the Correlation window length is increased, the reliability of
the computed delay also increases. However, the processing time to
compute the delay increases as well.

You can make the Find Delay block stop updating the delay after it
computes the same delay value for a specified number of samples. To
do so, select the Disable recurring updates check box, and enter a
positive integer in the Number of constant delay outputs to disable
updates field. For example, if you set Number of constant delay
outputs to disable updates to 20, the block will stop recalculating
and updating the delay after it calculates the same value 20 times in
succession. Disabling recurring updates causes the simulation to run
faster after the target number of constant delays occurs.

2-183

Find Delay

Examples

2-184

Tips for Using the Block Effectively

® Set Correlation window length sufficiently large so that the
computed delay eventually stabilizes at a constant value. When
this occurs, the signal from the optional chg output port stabilizes
at the constant value of zero. If the computed delay is not constant,
you should increase Correlation window length. If the increased
value of Correlation window length exceeds the duration of
the simulation, then you should also increase the duration of the
simulation accordingly.

e If the cross-correlation between the two signals is broad, then the
Correlation window length value should be much larger than the
expected delay, or else the algorithm might stabilize at an incorrect
value. For example, a CPM signal has a broad autocorrelation, so it
has a broad cross-correlation with a delayed version of itself. In this
case, the Correlation window length value should be much larger
than the expected delay.

¢ Ifthe block calculates a delay that is greater than 75 percent of the
Correlation window length, the signal sRef is probably delayed
relative to the signal sDel. In this case, you should switch the signal
lines leading into the two input ports.

Finding the Delay Before Calculating an Error Rate

A typical use of this block is to determine the correct Receive

delay parameter in the Error Rate Calculation block. This is
illustrated in “Finding the Delay in a Model”. In that example, the
modulation/demodulation operation introduces a computational delay
into the received signal and the Find Delay block determines that the
delay is 6 samples. This value of 6 becomes a parameter in the Error
Rate Calculation block, which computes the bit error rate of the system.

Another example of this usage is in “Computing Delays”.
Finding the Delay to Help Align Words

Another typical use of this block is to determine how to align the
boundaries of frames with the boundaries of codewords or other types of

Find Delay

data blocks. “Manipulating Delays” describes when such alignment is
necessary and also illustrates, in the “Aligning Words of a Block Code”
discussion, how to use the Find Delay block to solve the problem.

Setting the Correlation Window Length

The next example illustrates how to tell when the Correlation
window length is not sufficiently large.

o Oy W T
EIeBr.nnuIIi sRef i g delay —.-I:l
inan Cela
— =Del ¥ chg e
Bernoulli Binany 10
Generator z Find Drelay Seape

Crelay

The model uses a Delay block to delay a signal by 10 samples, and uses
the Find Delay block to compare the original signal with the delayed
version. The model then displays the output of the Find Delay block in a
scope. If the Correlation window length is 15, the scope shows that
the calculated delay is not constant over time, as you can see below.

Change

a0 100 120 140 160 180 200

This result tells you to increase the Correlation window length. If
you increase it to 50, the calculated delay stabilizes at 10, as shown
below.

2-185

Find Delay

Dialog
Box

2-186

Delay

140 160 180

E1Block Parameters: Find Delay 2=l

—Find Delay [mask]

Find the delay between two signals sRef and sDel by finding the masimum of the
crozs-conelation function between them. The signal sDel should be delayed relative to
sRef, or else the computed delay will be incomect.

The optional ""change signal” output port emits an impulze at the time instant when the
current computed delay changes from the previous computed delay.

=
F

Correlation window length [samplez]:
[

™ Include "change signal” output port

[™ Disable recurring updates

Ok I Lancel | Help | Apply

Correlation window length
The number of samples the block uses to calculate the
cross-correlations of the two signals.

Include "change signal" output port
If you select this option, then the block has an extra output port
that emits an impulse when the current computed delay differs
from the previous computed delay.

Disable recurring updates
Selecting this option causes the block to stop computing the delay
after it computes the same delay value for a specified number
of samples.

Find Delay
|

Number of constant delay outputs to disable updates
A positive integer specifying how many times the block must
compute the same delay before ceasing to update. This field
appears only if Disable recurring updates is selected.

Algorithm The Find Delay block finds the delay by calculating the cross-correlations
of the first signal with time-shifted versions of the second signal, and
then finding the index at which the cross-correlation is maximized.

See Also Align Signals, Error Rate Calculation

2-187

FM Demodulator Passband

Purpose

Library

Description

2-188

LT T

Fhd

Demodulate FM-modulated data
Analog Passband Modulation, in Modulation

The FM Demodulator Passband block demodulates a signal that was
modulated using frequency modulation. The input is a passband
representation of the modulated signal. Both the input and output
signals are real sample-based scalar signals.

For best results, use a carrier frequency which is estimated to be
larger than 10% of your input signal’s sample time. This is due to the
implementation of the Hilbert transform by means of a filter.

In the following example, we sample a 10Hz input signal at 8000
samples per second. We then designate a Hilbert Transform filter
of order 100. Below is the response of the Hilbert Transform filter as
returned by fvtool.

FM Demodulator Passband

-} Figure 1: Filter ¥isualization Tool - Magnitude (dB) and Phase R =10l x|
Eile Edit Analysis Insert Wew ‘Window Help - u
DA&R | KOTNN\= 20 0X|EE
M2 20 BLORE

Magnitude (dB) and Phase Responzses

10 ¢ T T

Magnitude (dB)
Phase (radianz)

501 f ' ' ' ' | -160
05 1 15 2 25 < 35
Frequency (kHz)

Note the bandwidth of the filter’s magnitude response. By choosing

a carrier frequency larger than 10% (but less than 90%) of the input
signal’s sample time (8000 samples per second, in this example) or
equivalently, a carrier frequency larger than 400Hz, we ensure that
the Hilbert Transform Filter will be operating in the flat section of the
filter’s magnitude response (shown in blue), and that our modulated
signal will have the desired magnitude and form.

Typically, an appropriate Carrier frequency value is much higher
than the highest frequency of the input signal. By the Nyquist sampling
theorem, the reciprocal of the model’s sample time (defined by the
model’s signal source) must exceed twice the Carrier frequency
parameter.

2-189

FM Demodulator Passband

Dialog
Box

Pair Block

2-190

This block works only with real inputs of type double. This block is not
suited to be placed inside a triggered subsystem.

ZJFunction Block Parameters: FM Demodulator Passh x|

—FM Demodulator Pazsband [mazk] (link]

Demodulate a frequency modulated signal with a discriminator. The input signal must
be a sample-bazed scalar. The output is a 1-0 zample-based scalar.

=
F

Carrier frequency [Hz):
[Em
Initial phaze [rad]:

Jo

Frequency deviation [Hz]:

50

Hilbert tranzform filker order [must be even]:
J100

QK I Cancel | Help Apply

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier in radians.

Frequency deviation (Hz)
The frequency deviation of the carrier frequency in Hertz.
Sometimes it is referred to as the "variation" in the frequency.

Hilbert transform filter order
The length of the FIR filter used to compute the Hilbert transform.

FM Modulator Passband

FM Modulator Passband

Purpose
Library

Description

g 1)

Fhi

Modulate using frequency modulation
Analog Passband Modulation, in Modulation

The FM Modulator Passband block modulates using frequency
modulation. The output is a passband representation of the modulated
signal. The output signal’s frequency varies with the input signal’s
amplitude. Both the input and output signals are real sample-based
scalar signals.

If the input is u(¢) as a function of time ¢, then the output is
t
cos(anct + 21K, Jo w(tdt+ 9)

where:

¢ f.is the Carrier frequency parameter.

¢ 0 is the Initial phase parameter.

® K, is the Modulation constant parameter.

Typically, an appropriate Carrier frequency value is much higher
than the highest frequency of the input signal.

By the Nyquist sampling theorem, the reciprocal of the model’s sample
time (defined by the model’s signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block is not
suited to be placed inside a triggered subsystem.

2-191

FM Modulator Passband

Dialog
Box

Pair Block

2-192

IFunction Block Parameters: FM Modulator Passbal x|

—FM Modulator Pazsband [mask] [link]

Modulate the input signal uzging the frequency modulation method. The input zignal
must be a sample-bazed scalar. The output iz a1-D sample-bazed scalar.

=

Carrier frequency [Hz):
[Em
Initial phaze [rad]:

Jo

Frequency deviation [Hz]:
50

QK I Cancel | Help Apply

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier in radians.

Frequency deviation (Hz)
The frequency deviation of the carrier frequency in Hertz.
Sometimes it is referred to as the "variation" in the frequency.

FM Demodulator Passband

Free Space Path Loss

Purpose
Library

Description

Frae Space
Fath Loz
10 dB

Dialog
Box

Reduce amplitude of input signal by amount specified
RF Impairments

The Free Space Path Loss block simulates the loss of signal power due
to the distance between transmitter and receiver. The block reduces
the amplitude of the input signal by an amount that is determined in
either of two ways:

¢ By the Distance (km) and Carrier frequency (MHz) parameters,
if you specify Distance and Frequency in the Mode field

* By the Loss (dB) parameter, if you specify Decibels in the Mode
field

The input to this block must be a complex signal.

EBlock Parameters: Free Space Path Loss 2=l

—Free Space Path Loss [mask)]

Fieduce the amplitude of the input signal by the amount specified. The losz can be
specified directly using the "Decibels" mode, or indirectly using the "Distance and
Frequency'' mode.

The reciprocal of the loss is applied as a gain, e.g., a loss of +20 dB, which reduces
the signal by a factor of 10, comesponds to a gain value of 0.1

Mote: The decibel amount shown on the mask iz rounded for dizsplay purpozes only.

nd Frequency
Distance [km]:
Jo1on

Carrier frequency [MHz]:
J1320

Ok Lancel Help Apply

Mode
Method of specifying the amount by which the signal power
is reduced. The choices are Decibels and Distance and
Frequency.

2-193

Free Space Path Loss

Examples

See Also

2-194

Loss

The signal loss in decibels. This parameter appears when you
set Mode to Decibels.

Distance
Distance between transmitter and receiver in kilometers. This

parameter appears when you set Mode to Distance and
Frequency.

Carrier frequency (MHz)
The carrier frequency in megahertz. This parameter appears
when you set Mode to Distance and Frequency.

The model below illustrates the effect of the Free Space Path Loss block
with the following parameter settings:

® Mode is set to Distance and Frequency.
¢ Distance (km) is set to 0.5

¢ Carrier frequency (MHz) is set to 180

Free Space 0.0002651
comple=1) Fath Loss
7z dB

Constant

¥

Free Space Dizplay
Fath Loss

Memoryless Nonlinearity

Gardner Timing Recovery

Purpose
Library

Description

Gardner Sym

Timing Recovery o

Recover symbol timing phase using Gardner’s method
Timing Phase Recovery sublibrary of Synchronization

The Gardner Timing Recovery block recovers the symbol timing phase
of the input signal using Gardner’s method. This block implements a
non-data-aided feedback method that is independent of carrier phase
recovery. The timing error detector that forms part of this block’s
algorithm requires at least two samples per symbol, one of which is the
point at which the decision can be made.

Inputs

By default, the block has one input port. Typically, the input signal is
the output of a receive filter that is matched to the transmitting pulse
shape. For best results, the input signal power should be less than 1.
The input must be a scalar or a frame-based column vector. The input
uses N samples to represent each symbol, where N > 1 is the Samples
per symbol parameter. If the input is frame-based, then its vector
length is N*R, where R is a positive integer that indicates the number
of symbols per frame. If the input is sample-based, then its sample time
is 1/N times the underlying symbol period.

If the Reset parameter is set to On nonzero input via port, then the
block has a second input port, labeled Rst. The Rst input determines

when the timing estimation process restarts, and must be a scalar. The
sample time of the Rst input equals the symbol period if the input signal
is sample-based, and the frame period if the input signal is frame-based.

Outputs

The block has two output ports, labeled Sym and Ph:

® The Sym output is the result of applying the estimated phase
correction to the input signal. This output is the signal value for each

symbol, which can be used for decision purposes. The values in the
Sym output occur at the symbol rate:

2-195

Gardner Timing Recovery

2-196

= If the input signal is a frame-based column vector of length N*R,
then the Sym output is a frame-based column vector of length R
having the same frame period.

= If the input signal is a sample-based scalar with sample time T/N,
then the Sym output is a sample-based scalar with sample time T.

The Ph output gives the phase estimate for each symbol in the input.

The Ph output contains nonnegative real numbers less than N.
Noninteger values for the phase estimate correspond to interpolated
values that lie between two values of the input signal. The sample
time or frame period of the Ph output is the same as that of the Sym
output.

Note If the Ph output is very close to either zero or Samples per
symbol, or if the actual timing phase offset in your input signal is
very close to zero, then the block’s accuracy might be compromised
by small amounts of noise or jitter. The block works well when the
timing phase offset is significant rather than very close to zero.

Delays

This block incurs a delay of two symbols when the input is frame-based
and three symbols when the input is sample-based.

Gardner Timing Recovery

. _
Dla Iog E! Block Parameters: Gardner Timing Recovery ﬂﬂ
—Gardner Timing Recovery [mask)
Box)

Fiecover the symbol timing phaze uzing Gardner's method. This non-data-aided
feedback method iz suitable for linear baseband modulations.

The method estimates the symbal timing phase offset for each incoming symbal and
outputs the signal value comesponding to the estimated spmbol zampling ingtant.

The gecond output returns the estimated timing phase offset for each symbol, which
iz a nonnegative real number lezs than M where M iz the number of samples per
zymbaol.

The ermor update gain parameter iz the step size used for updating the successive
phase estimates.

=
F

Samples per symbal:

Error update gain:
Joos

Reset: I MHone LI

Ok | Lancel | Help | Apply |

Samples per symbol
The number of samples, N, that represent each symbol in the
input signal. This must be greater than 1.

Error update gain
A positive real number representing the step size that the block
uses for updating successive phase estimates. Typically, this
number is less than 1/N, which corresponds to a slowly varying
phase.

Reset
Determines whether and under what circumstances the block
restarts the phase estimation process. Choices are None, Every
frame, and On nonzero input via port. The last option causes
the block to have a second input port, labeled Rst.

Algorithm This block uses a timing error detector whose result for the kth symbol
is e(k), given by

2-197

Gardner Timing Recovery

Examples

References

2-198

e(k) = ar(k) +ag(k)

aI(k) = {yl((k —].)T-‘r dk—l) —yl(kT +dk)}y1(kT— T/2+ dk—l)

aqg®R) ={yo((k—DT +dj,_1) - yo (kT +dp)} yo (kT T /2+dj,_1)
where
* y; and y, are the in-phase and quadrature components, respectively,

of the block’s input signal
e T is the symbol period
¢ d, is the phase estimate for the kth symbol
Notice from the expressions in curly braces above that the timing error
detector approximates the derivative of y using finite differences.

For more information about the role that e(k) plays in this block’s
algorithm, see “Feedback Methods for Timing Phase Recovery” in Using
the Communications Blockset.

The gardner_vfracdelay demonstration model uses this block.

[1] Gardner, F. M., "A BPSK/QPSK Timing-Error Detector for Sampled
Receivers", IEEE Transactions on Communications, Vol. COM-34, No.
5, May 1986, pp. 423-429.

[2] Mengali, Umberto and Aldo N. D’Andrea, Synchronization
Techniques for Digital Receivers, New York, Plenum Press, 1997.

[3] Meyr, Heinrich, Marc Moeneclaey, and Stefan A. Fechtel, Digital
Communication Receivers, Vol 2, New York, Wiley, 1998.

[4] Oerder, M., "Derivation of Gardner’s Timing-Error Detector from the
ML principle", IEEE Transactions on Communications, Vol. COM-35,
No. 6, June 1987, pp. 684-685.

Gardner Timing Recovery

See Also Early-Late Gate Timing Recovery, Squaring Timing Recovery,
Mueller-Muller Timing Recovery

2-199

Gaussian Filter

Purpose

Library

Description

2-200

A N

Gaussian

Filter input signal, possibly downsampling, using Gaussian FIR filter
Comm Filters

The Gaussian Filter block filters the input signal using a Gaussian FIR
filter. The block expects the input signal to be upsampled, so that the
Input samples per symbol parameter, N, is at least 2. The block’s
icon shows the filter’s impulse response."

Characteristics of the Filter

The impulse response of the Gaussian filter is

h(t) = 25"
Vor -8
where

VIn(2)

~ 2nBT

and B is the filter’s 3-dB bandwidth. The BT product parameter is
B times the input signal’s symbol period. For a given BT product,
the gaussfir function in the Signal Processing Toolbox generates

a filter that is half the bandwidth of the filter generated by the
Communications Blockset Gaussian Filter block.

The Group delay parameter is the number of symbol periods between
the start of the filter’s response and the peak of the filter’s response.
The group delay and N determine the length of the filter’s impulse
response, which is 2 * N * Group delay + 1.

The Filter coefficient normalization parameter indicates how the

block scales the set of filter coefficients:

e Sum of coefficients means that the sum of the coefficients equals
1.

Gaussian Filter

® Filter energy means that the sum of the squares of the coefficients
equals 1.

® Peak amplitude means that the maximum coefficient equals 1.

After the block normalizes the set of filter coefficients as above, it
multiplies all coefficients by the Linear amplitude filter gain
parameter.

Input and Output Signals

The input signal must be a scalar or a frame-based column vector. Set
the Input sampling mode parameter according to whether the input
is sample-based or frame-based. double, single, and fixed-point data
types are supported.

Exporting Filter Coefficients to the MATLAB Workspace

To examine or manipulate the coefficients of the filter that this block
designs, select Export filter coefficients to workspace. Then set
the Coefficient variable name parameter to the name of a variable
that you want the block to create in the MATLAB workspace. Running
the simulation causes the block to create the variable, overwriting any
previous contents in case the variable already exists.

2-201

Gaussian Filter

L]
DIG IOg E! Function Block Parameters: Gaussian Filter x|
Box —Gaussian Filter

Filter the input signal using a Gaussian FIR filker.

The group delay iz specified az the number of symbaol periods between the start of the
filker rezponse and its peak. Thiz delay alzo determines the length of the filker impulse
responze, which is 2N * Group delay + 1.

Input zamples per symbal [M]: IE
BT product: ID.3

Group delay [number of spmbols]: |2

Input zampling mode:l Frame-based

L L«

Filter coefficient normalization:l Sum of coefficients

Linear amplitude filker gair: |1

[~ Export filter coefficients to workspace

YWisualize filker with FVTooll
QK I Cancel | Help Apply

Input samples per symbol

A positive integer representing the number of samples per symbol
in the input signal.

BT product
The product of the filter’s 3-dB bandwidth and the input signal’s
symbol period

Group delay

A positive integer that represents the number of symbol periods
between the start of the filter response and its peak.

Input sampling mode
The type of input signal: Frame-based or Sample-based.

Filter coefficient normalization
The block scales the set of filter coefficients so that this quantity
equals 1. Choices are Sum of coefficients, Filter energy,
and Peak amplitude.

2-202

Gaussian Filter

See Also

References

Linear amplitude filter gain
A positive scalar used to scale the filter coefficients after the
block uses the normalization specified in the Filter coefficient
normalization parameter.

Export filter coefficients to workspace
If you check this box, then the block creates a variable in the
MATLAB workspace that contains the filter coefficients.

Coefficient variable name
The name of the variable to create in the MATLAB workspace.
This field appears only if Export filter coefficients to
workspace is selected.

Visualize filter with FVTool
If you click this button, then MATLAB launches the Filter
Visualization Tool, fvtool, to analyze the Gaussian filter
whenever you apply any changes to the block’s parameters. If you
launch fvtool for the filter, and subsequently change parameters
in the mask, fvtool will not update. You will need to launch a
new fvtool in order to see the new filter characteristics. Also
note that if you have launched fvtool, then it will remain open
even after the model is closed.

Raised Cosine Receive Filter, gaussfir
[1] 3GPP TS 05.04 V8.4.0 — 3rd Generation Partnership Project;
Technical Specification Group GSM/EDGE Radio Access Network;

Digital cellular telecommunications system (Phase 2+); Modulation
(Release 1999)

2-203

Gaussian Noise Generator

Purpose

Library

Description

2-204

Arpesboefip

Gaussian

Generate Gaussian distributed noise with given mean and variance
values

Noise Generators sublibrary of Comm Sources

The Gaussian Noise Generator block generates discrete-time white
Gaussian noise. You must specify the Initial seed vector in the
simulation.

The Mean Value and the Variance can be either scalars or vectors.

If either of these is a scalar, then the block applies the same value to
each element of a sample-based output or each column of a frame-based
output. Individual elements or columns, respectively, are uncorrelated
with each other.

When the Variance is a vector, its length must be the same as that
of the Initial seed vector. In this case, the covariance matrix is a
diagonal matrix whose diagonal elements come from the Variance
vector. Since the off-diagonal elements are zero, the output Gaussian
random variables are uncorrelated.

When the Variance is a square matrix, it represents the covariance
matrix. Its off-diagonal elements are the correlations between pairs of
output Gaussian random variables. In this case, the Variance matrix
must be positive definite, and it must be N-by-N, where N is the length
of the Initial seed.

The probability density function of n-dimensional Gaussian noise is

fx) = ((271;)” det K)_I/Z exp(—(x TR (x- u)/z)

where x is a length-n vector, K is the n-by-n covariance matrix, p is the
mean value vector, and the superscript T indicates matrix transpose.

Initial Seed

The Initial seed parameter initializes the random number generator
that the Gaussian Noise Generator block uses to add noise to the input
signal. For best results, the Initial seed should be a prime number

Gaussian Noise Generator

greater than 30. Also, if there are other blocks in a model that have
an Initial seed parameter, you should choose different initial seeds
for all such blocks.

You can choose seeds for the Gaussian Noise Generator block using
the Communications Blockset’srandseed function. At the MATLAB
prompt, enter

randseed

This returns a random prime number greater than 30. Entering

randseed again produces a different prime number. If you supply an
integer argument, randseed always returns the same prime for that
integer. For example, randseed(5) always returns the same answer.

Atiributes of Output Signal

The output signal can be a frame-based matrix, a sample-based row
or column vector, or a sample-based one-dimensional array. These
attributes are controlled by the Frame-based outputs, Samples
per frame, and Interpret vector parameters as 1-D parameters.
See “Signal Attribute Parameters for Random Sources” in Using the
Communications Blockset for more details.

If the Initial seed parameter is a vector, then its length becomes the
number of columns in a frame-based output or the number of elements
in a sample-based vector output. In this case, the shape (row or column)
of the Initial seed parameter becomes the shape of a sample-based
two-dimensional output signal. If the Initial seed parameter is a scalar
but either the Mean value or Variance parameter is a vector, then the
vector length determines the output attributes mentioned above.

2-205

Gaussian Noise Generator

(]
Dialog x

Box —Gaussian Moige Generator [maszk] (link]

Generate Gaussian distibuted noize with given mean and wvariance
wvalues.

=

Mean walue:

@
Wariance [vector or matriz):
Ji

Initial seed:

|4

Sample time:

Ji

[~ Frame-based cutputs

Samples per frame:
Ji
[Interpret vector parameters as 1-0

Output data type: I double LI

ok I Cancel | Help |

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Mean value
The mean value of the random variable output.

Variance
The covariance among the output random variables.

Initial seed
The initial seed value for the random number generator.

Sample time
The period of each sample-based vector or each row of a

frame-based matrix.

2-206

Gaussian Noise Generator

See Also

Frame-based outputs
Determines whether the output is frame-based or sample-based.
This box is active only if Interpret vector parameters as 1-D
is unchecked.

Samples per frame
The number of samples in each column of a frame-based output
signal. This field is active only if Frame-based outputs is
checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is
active only if Frame-based outputs is unchecked.

Output data type
The output can be set to double or single data types.

Random Source (Signal Processing Blockset), AWGN Channel, rand
(built-in MATLAB function), randseed

2-207

General Block Deinterleaver

Purpose

Library

Description

General
Blod
Deinterleaver

Dialog
Box

2-208

Restore ordering of symbols in input vector
Block sublibrary of Interleaving

The General Block Deinterleaver block rearranges the elements of its
input vector without repeating or omitting any elements. The input
can be real or complex. If the input contains N elements, then the
Elements parameter is a vector of length N that indicates the indices,
in order, of the output elements that came from the input vector. That
is, for each integer k between 1 and N,

Output(Elements(k)) = Input(k)

The Elements parameter must contain unique integers between 1
and N.

If the input is frame-based, then both it and the Elements parameter
must be column vectors.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

To use this block as an inverse of theGeneral Block Interleaver block,
use the same Elements parameter in both blocks. In that case, the
two blocks are inverses in the sense that applying the General Block
Interleaver block followed by the General Block Deinterleaver block
leaves data unchanged.

E1Block Parameters: General Block Deinterleaveﬁ 2=l

—General Block Deinterl [mazk]

Fieorder the elements of the input vector. yelements] = u. The length of Elements
must match the input zsignal width,

=
F

Elements:

[EE

Ok Lancel Help Apply

General Block Deinterleaver

Examples

Pair Block

See Also

Elements
A vector of length N that lists the indices of the output elements
that came from the input vector.

This example reverses the operation in the example on the General
Block Interleaver block reference page. If Elements is [4,1,3,2] and
the input to the General Block Deinterleaver block is [1;40;59;32],
then the output of the General Block Deinterleaver block is
[40;32;59;1].

General Block Interleaver

perms (MATLAB function)

2-209

General Block Interleaver

Purpose
Library

Description

General
Blod
Interleawer

Dialog
Box

2-210

Reorder symbols in input vector
Block sublibrary of Interleaving

The General Block Interleaver block rearranges the elements of its
input vector without repeating or omitting any elements. The input can
be real or complex. If the input contains N elements, then the Elements
parameter is a vector of length N that indicates the indices, in order, of
the input elements that form the length-N output vector; that is,

Output(k) = Input(Elements(k))
for each integer k between 1 and N. The contents of Elements must be

integers between 1 and N, and must have no repetitions.

If the input is frame-based, then both it and the Elements parameter
must be column vectors.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

EBlock Parameters: General Block Interleaver 2=l

—General Block |nterl [mazk]

Fieorder the elements of the input vector. y = ulElements). The length of Elements
must match the input zsignal width,

=
F

Elements:

[EE

Ok Lancel Help Apply

Elements
A vector of length N that lists the indices of the input elements
that form the output vector.

General Block Interleaver

Examples If Elements is [4,1,3,2] and the input vector is [40;32;59;1], then
the output vector is [1;40;59;32]. Notice that all of these vectors
have the same length and that the vector Elements is a permutation
of the vector [1:4].

Pair Block General Block Deinterleaver

See Also perms (MATLAB function)

2-211

General CRC Generator

Purpose

Library

Description

2-212

Zeneral
CRC
Generator

Generate CRC bits according to generator polynomial and append to
input data frames

CRC sublibrary of Error Correction and Detection

The General CRC Generator block generates cyclic redundancy code
(CRC) bits for each input data frame and appends them to the frame.
You specify the generator polynomial for the CRC algorithm using the
Generator polynomial parameter. This block is general in the sense
that the degree of the polynomial does not need to be a power of two.
You represent the polynomial in one of these ways:

® As a binary row vector containing the coefficients in descending
order of powers. For example, [1 1 0 1] represents the polynomial
2+ 2%+ 1.

® As an integer row vector containing the powers of nonzero terms
in the polynomial, in descending order. For example, [3 2 0]
represents the polynomial x3 + x2 + 1.

You specify the initial state of the internal shift register by the Initial
states parameter. The Initial states parameter is either a scalar

or a binary row vector of length equal to the degree of the generator
polynomial. A scalar value is expanded to a row vector of length equal
to the degree of the generator polynomial. For example, the default
initial state of [0] is expanded to a row vector of all zeros.

You specify the number of checksums that the block calculates for
each input frame by the Checksums per frame parameter. The
Checksums per frame value must evenly divide the size of the input
frame. If the value of Checksums per frame is k, the block does the
following:

1 Divides each input frame into k subframes of equal size
2 Prefixes the Initial states vector to each of the k subframes

3 Applies the CRC algorithm to each augmented subframe

General CRC Generator

4 Appends the resulting checksums at the end of each subframe

5 Outputs concatenated subframes

If the size of the input frame is m and the degree of the generator
polynomial is r, the output frame has size m + k * r.

This block supports double and boolean data types. The output data
type is inherited from the input.

Example

Suppose the size of the input frame is 10, the degree of the generator
polynomial is 3, Initial states is [0], and Checksums per frame is
2. The block divides each input frame into two subframes of size 5 and
appends a checksum of size 3 to each subframe, as shown below. The
initial states are not shown in this example, because an initial state of
[0] does not affect the output of the CRC algorithm. The output frame
then has size 5+ 3 + 5+ 3 = 16.

Transmitted codeword
F T

1

0

0 First half of message word
Message word :;

1
j—
1
r
L

First checksum

1
1
1 Second half of message word
0
- - | 0 i

OO — —— — O — O O

r
OO OO O — -0 — O O
L

Second checksum

2-213

General CRC Generator

Dialog
Box

Algorithm

2-214

Signal Attributes
The General CRC Generator block has one input port and one output
port. Both ports allow only frame-based binary column vectors.

ZBlock Parameters: General CRC Generator 2=l

—General CRC Generator [mazk)]

Generate CRLC bits according to the generator polynomial and append them ta the
input data frames. The generator polynomial must be specified as a binary vector or a
descending ordered polynomial, to indicate the connection points.

The initial states parameter must be a binary scalar or vector of length equal ta the
degree of the polynomial.

The input must be a binary frame-based column vector,

=
F

Generator polynomial:

Initial states:
[

Checksums per frame:

Jh

Ok | Lancel | Help | Apply |

Generator polynomial
A binary or integer row vector specifying the generator
polynomial, in descending order of powers.

Initial states
Binary scalar or a binary row vector of length equal to the degree
of the generator polynomial, specifying the initial state of the
internal shift register.

Checksums per frame
Positive integer specifying the number of checksums the block
calculates for each input frame.

For a description of the CRC algorithm as implemented by this block,
see “Cyclic Redundancy Check Coding” in Using the Communications
Blockset.

General CRC Generator

Schematic ® n
-t XOR addition
of the CRC
Implementation
p gr.1 gr-2 g1 go
A(R)
o r2l—o—----o—{ o }-®
{ak—15ak—29-~~aa1aa()}
l dr 1 ldr 2 dO
The above circuit divides the polynomial
alx) = ak_lxk_l + ak_2xk_2 +otaxtag by
-1 -2

8(x) = 81X + g0 T o+ g1x+ 8 , and returns the
remainder 4(x) = dr—lxr_1 + dr—Zxr_2 +otdix+dy
The input symbols lap_1,ap9,...,09,01,00} are fed into the shift
register one at a time in order of decreasing index. When the last
symbol (%) works its way out of the register (achieved by augmenting
the message with r zeros), the register contains the coefficients of the
remainder polynomial d(x).
This remainder polynomial is the checksum that is appended to the
original message, which is then transmitted.

References [1] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Englewood Cliffs, N.J., Prentice-Hall, 1988.
[2] Wicker, Stephen B., Error Control Systems for Digital
Communication and Storage, Upper Saddle River, N.J., Prentice Hall,
1995.

Pair Block General CRC Syndrome Detector

2-215

General CRC Generator

See Also CRC-N Generator, CRC-N Syndrome Detector

2-216

General CRC Syndrome Detector

Purpose
Library

Description

Feneral CRC
Syndrome
Letector Em

Detect errors in input data frames according to generator polynomial
CRC sublibrary of Error Correction and Detection

The General CRC Syndrome Detector block computes checksums for its
entire input frame. The block’s second output is a vector whose size is
the number of checksums, and whose entries are 0 if the checksum
computation yields a zero value, and 1 otherwise. The block’s first
output is the set of message words with the checksums removed.

The block’s parameter settings should agree with those in the General
CRC Generator block.

You specify the number of checksums the block calculates for each
frame by the Checksums per frame parameter. If the Checksums
per frame value is k, the size of the input frame is n, and the degree of
the generator polynomial is r, then k must divide n - k*r, which is the
size of the message word.

This block supports double and boolean data types. The output data
type is inherited from the input.

Example

Suppose the received codeword has size 16, the generator polynomial
has degree 3, Initial states is [0], and Checksums per frame is

2. The block computes the two checksums of size 3, one from the first
half of the received codeword, and the other from the second half of the
received codeword, as shown in the following figure. The initial states
are not shown in this example, because an initial state of [0] does not
affect the output of the CRC algorithm. The block concatenates the two
halves of the message word as a single vector of size 10 and outputs this
vector through the first output port. The block outputs a 2-by-1 binary
frame vector whose entries depend on whether the computed checksums
are zero. The following figure shows an example in which the first
checksum is nonzero and the second checksum is zero. This indicates
that an error occurred in transmitting the first half of the codeword.

2-217

General CRC Syndrome Detector

2-218

Received codeword 1 [17
T 0 . 0
0 0 First half of message word 0
0 ']
] 0 . 0
0 | First checksum | | 1
1 0 is nonzero | | 1
0 1
1
1 ST 0
1 T | 0
1 1 First output
1
0 1 Second half of message word
0 0
0
' | [o]
0 ! Second che.cksum 0 __———10
L 0 0 szer0 | Second output
| 0]

Signal Attributes

The General CRC Syndrome Detector block has one input port and two
output ports. All ports allow frame-based binary column vectors only.

General CRC Syndrome Detector

Dialog
Box

Algorithm

References

EBlock Parameters: General CRC Syndrome Del:e: 2=l

—General CAC Syndrome Detector [mask)

Detect errors in the input data frames according to the generator polynomial. The
generator polynomial must be specified az a binary vector or a descending ordered
polynamial, to indicate the connection points.

The first output iz the data frame with the CRC bits removed and the second output
indicates if an eror was detected in the data frame.

The initial states parameter must be a binary scalar or vector of length equal to the
degree of the polynomial.

The input must be a binary frame-based column vector,

=
F

Generator polynomial:

Initial states:
[

Checksums per frame:

Jh

Ok | Lancel | Help Apply

Generator polynomial
A binary or integer row vector specifying the generator
polynomial, in descending order of powers.

Initial states
A binary scalar or a binary row vector of length equal to the
degree of the generator polynomial, specifying the initial state of
the internal shift register.

Checksums per frame
A positive integer specifying the number of checksums the block
calculates for each input frame.

For a description of the CRC algorithm as implemented by this block,
see “Cyclic Redundancy Check Coding” in Using the Communications
Blockset.

[1] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Englewood Cliffs, N.J., Prentice-Hall, 1988.

2-219

General CRC Syndrome Detector

[2] Wicker, Stephen B., Error Control Systems for Digital
Communication and Storage, Upper Saddle River, N.J., Prentice Hall,

1995.
Pair Block General CRC Generator
See Also CRC-N Generator, CRC-N Syndrome Detector

2-220

General Multiplexed Deinterleaver

Purpose
Library

Description

General
Multiplexed
Deinterleawer

Dialog
Box

Restore ordering of symbols using specified-delay shift registers
Convolutional sublibrary of Interleaving

The General Multiplexed Deinterleaver block restores the original
ordering of a sequence that was interleaved using theGeneral
Multiplexed Interleaver block.

In typical usage, the parameters in the two blocks have the same
values. As a result, the Interleaver delay parameter, V, specifies the
delays for each shift register in the corresponding interleaver, so that
the delays of the deinterleaver’s shift registers are actually max (V) -V.

The input can be either a scalar or a frame-based column vector. It
can be real or complex. The input and output signals share the same
sample time.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

ElBlock Parameters: General Multiplexed Deinter:_ 2=l

—General Multiplexed Deinterl [mazk]

A general multiplexed deinterleaver conzsists of M registers. “With each new input
symbol, a commutator switches to a new register and the new symbal is shifted in
while the oldest symbal in that register iz shifted out. *when the commutator reaches
the Mth register, upon the next new input, it returns to the first register.

The multiplexed deinterleaver azzociated with a general multiplexed interleaver has
the same number of registers as the interleaver. The delay in a particular
deinterleaver register depends on the largest interleaver delay minuz the interleawver
delay for the given register.

=
F

Interleaver delay [samples]:
20 0

Initial conditions:
a

Ok Lancel Help Apply

2-221

General Multiplexed Deinterleaver

Interleaver delay (samples)
A vector that lists the number of symbols that fit in each shift
register of the corresponding interleaver. The length of this vector
is the number of shift registers.

Initial conditions
The values that fill each shift register when the simulation begins.

Pair Block General Multiplexed Interleaver
See Also Convolutional Deinterleaver, Helical Deinterleaver
References [1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston:

Kluwer Academic Publishers, 1999.

2-222

General Multiplexed Interlea

ver

Purpose
Library

Description

General
Multiplexed
Interleawver

Permute input symbols using set of shift registers with specified delays
Convolutional sublibrary of Interleaving

The General Multiplexed Interleaver block permutes the symbols in
the input signal. Internally, it uses a set of shift registers, each with
its own delay value.

The input can be either a scalar or a frame-based column vector. It
can be real or complex. The input and output signals share the same
sample time.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

The Interleaver delay parameter is a column vector whose entries
indicate how many symbols can fit into each shift register. The length of
the vector is the number of shift registers. (In sample-based mode, it
can also be a row vector.)

The Initial conditions parameter indicates the values that fill each
shift register at the beginning of the simulation. If Initial conditions
is a scalar, then its value fills all shift registers; if Initial conditions is
a column vector, then each entry fills the corresponding shift register.
(In sample-based mode, Initial conditions can also be a row vector.) If
a given shift register has zero delay, then the value of the corresponding
entry in the Initial conditions vector is unimportant.

2-223

General Multiplexed Interleaver

Dialog
Box

Pair Block
See Also

References

2-224

EBlock Parameters: General Multiplexed Interlea: 2=l

—General Multiplexed Interl [mazk]
A general multiplexed interleaver congists of M registers, each with a specified delay.
‘with each new input symbol, & commutatar switches to a new register and the new
zymbaol iz zhifted in while the oldest symbol in that register iz shifted out. ‘When the
commutator reaches the Mth register, upon the next new input, it returns ta the first
register.

=
F

Interleaver delay [samples]:

201310

Initial conditions:
a

ok | Lancel | Help | Apply

Interleaver delay (samples)

A vector that lists the number of symbols that fit in each shift
register. The length of this vector is the number of shift registers.

Initial conditions

The values that fill each shift register when the simulation begins.

General Multiplexed Deinterleaver

Convolutional Interleaver, Helical Interleaver

[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston:

Kluwer Academic Publishers, 1999.

General QAM Demodulator Baseband

Purpose
Library

Description

AL

General
A

Dialog
Box

Pair Block
See Also

Demodulate QAM-modulated data
AM, in Digital Baseband sublibrary of Modulation

The General QAM Demodulator Baseband block demodulates a signal
that was modulated using quadrature amplitude modulation. The input
is a baseband representation of the modulated signal.

The input must be a discrete-time complex signal. The Signal
constellation parameter defines the constellation by listing its points
in a vector of complex numbers. The block maps the mth point in the
Signal constellation vector to the integer m-1.

The input can be either a scalar or a frame-based column vector and
must be of data types single or double.

JFunction Block Parameters: General QAM Dema x|

—General BAM Demodulatar Baseband [mask] (link)

Demodulate the input signal using the quadrature amplitude modulation method.

For zample-based input, the input must be a scalar. For frame-bazed input, the input
must be a column vectar.

=
F

Signal constellation:
I[exp[2"pi"i"[0:8]£?]]

Output data type: | double LI

Ok I Lancel Help | Lpply |

Signal constellation
A real or complex vector that lists the constellation points.

Output data type
This block can output the data types int8, uint8, int16, uint16,
int32, uint32, single, and double.

General QAM Modulator Baseband

Rectangular QAM Demodulator Baseband

2-225

General QAM Modulator Baseband

Purpose
Library

Description

LI

General
A

Dialog
Box

2-226

Modulate using quadrature amplitude modulation
AM, in Digital Baseband sublibrary of Modulation

The General QAM Modulator Baseband block modulates using
quadrature amplitude modulation. The output is a baseband
representation of the modulated signal.

The Signal constellation parameter defines the constellation by
listing its points in a length-M vector of complex numbers. The input
signal values must be integers between 0 and M-1. The block maps an
input integer m to the (m+1)st value in the Signal constellation vector.

The input can be either a scalar or a frame-based column vector. For
integer inputs, the block can accept the data types int8, uint8, int16,
uint16, int32, uint32, single, and double. For bit inputs, the block
can accept int8, uint8, int16, uint16, int32, uint32, boolean,
single, and double.

EJFunction Block Parameters: General QAM Mod x|

—General BAM Modulator Baseband [mask] (link]

Modulate the input zsignal uging the quadrature amplitude modulation method.

The block only accepts integers az input. For zample-based integer input, the input
muszt be a scalar. For frame-bazed integer input, the input must be a column vectar.

Signal constellation:

(e 14711
Output Data type:l double LI

QK I Cancel Help | Apply |

Signal constellation

A real or complex vector that lists the constellation points.

Output data type

The output data type can be set to double, single, Fixed-point,
User-defined, or Inherit via back propagation.

General QAM Modulator Baseband

Setting this to Fixed-point or User-defined will enable fields
in which you can further specify details. Setting this to Inherit
via back propagation, sets the output data type and scaling
to match the following block..

Output word length
Specify the word length, in bits, of the fixed-point output data
type. This parameter is only visible when you select Fixed-point
for the Output data type parameter.

User-defined data type
Specify any signed built-in or signed fixed-point data type. You
can specify fixed-point data types using the sfix, sint, sfrac,
and fixdt functions from Simulink Fixed Point. This parameter
is only visible when you select User-defined for the Output
data type parameter.

Set output fraction length to
Specify the scaling of the fixed-point output by either of the
following two methods:

® Choose Best precision to have the output scaling
automatically set such that the output signal has the best
possible precision.

® Choose User-defined to specify the output scaling in the
Output fraction length parameter.

This parameter is only visible when you select Fixed-point

for the Output data type parameter, or when you select
User-defined and the specified output data type is a fixed-point
data type.

Output fraction length
For fixed-point output data types, specify the number of fractional
bits, or bits to the right of the binary point. This parameter is
only visible when you select Fixed-point or User-defined for
the Output data type parameter and User-defined for the Set
output fraction length to parameter.

2-227

General QAM Modulator Baseband

Pair Block General QAM Demodulator Baseband

See Also Rectangular QAM Modulator Baseband

2-228

General TCM Decoder

Purpose

Library

Description

General
TCh

Decode trellis-coded modulation data, mapped using arbitrary
constellation

Trellis-Coded Modulation

The General TCM Decoder block uses the Viterbi algorithm to decode a
trellis-coded modulation (TCM) signal that was previously modulated
using an arbitrary signal constellation.

The Trellis structure and Signal constellation parameters in this
block should match those in theGeneral TCM Encoder block, to ensure
proper decoding. In particular, the Signal constellation parameter
must be in set-partitioned order.

Input and Output Signals

The input signal must be a frame-based column vector containing
complex numbers.

If the convolutional encoder described by the trellis structure represents
a rate k/n code, then the General TCM Decoder block’s output is a
frame-based binary column vector whose length is k times the vector
length of the input signal.

The input signal must be double or single. The reset port accepts
double or boolean.

Operation Modes

The block has three possible methods for transitioning between
successive frames. The Operation mode parameter controls which
method the block uses. This parameter also affects the range of possible
values for the Traceback depth parameter, D.

¢ In Continuous mode, the block initializes all state metrics to zero
at the beginning of the simulation, waits until it accumulates D
symbols, and then uses a sequence of D symbols to compute each of
the traceback paths. D can be any positive integer. At the end of
each frame, the block saves its internal state metric for use with
the next frame.

2-229

General TCM Decoder

2-230

If you select the Enable the reset input port check box, the block
displays another input port, labeled Rst. This port receives an
integer scalar signal. Whenever the value at the Rst port is nonzero,
the block resets all state metrics to zero and sets the traceback
memory to zero.

In Truncated mode, the block treats each frame independently. The
traceback path starts at the state with the lowest metric. D must be
less than or equal to the vector length of the input.

In Terminated mode, the block treats each frame independently.
The traceback path always starts at the all-zeros state. D must be
less than or equal to the vector length of the input. If you know that
each frame of data typically ends at the all-zeros state, then this
mode is an appropriate choice.

Decoding Delay

If you set Operation mode to Continuous, then this block introduces
a decoding delay equal to Traceback depth*k bits for a rate k/n
convolutional code. The decoding delay is the number of zeros that
precede the first decoded bit in the output.

The block incurs no delay for other values of Operation mode.

General TCM Decoder

Dialog
Box

ZJFunction Block Parameters: General TCM Decod x|

—General TCM Decoder [mazk] (link]

Uze the Viterbi algorithm to decode trellis-coded modulation data, mapped using the
Signal constellation parameter that expects complex constellation points in the
zet-partitioned order.

The Trellis structure parameter must be a valid MATLAB trellis structure. Ta check if a
shucture is & valid trellis structure, use the istrellis function in MATLAB.

Signal constellation:

|exp[2"pi"i"[0 4261537)/4)
Traceback depth:
|2

Operation mode:l Continuous LI
[~ Enable the reset input part
Output data type:l double LI

QK I Cancel Help | Apply |

Trellis structure
MATLAB structure that contains the trellis description of the
convolutional encoder.

Signal constellation
A complex vector that lists the points in the signal constellation
in set-partitioned order.

Traceback depth
The number of trellis branches (equivalently, the number of
symbols) the block uses in the Viterbi algorithm to construct each
traceback path.

Operation mode
The operation mode of the Viterbi decoder. The choices are
Continuous, Truncated, and Terminated.

Enable the reset input port
When you check this box, the block has a second input port labeled
Rst. Providing a nonzero value to this port causes the block to
set its internal memory to the initial state before processing the

2-231

General TCM Decoder

input data. This field appears only if you set Operation mode
to Continuous.

Output data type

The output type of the block can be specified as a boolean or
double. By default, the block sets this to double.

Pair Block General TCM Encoder

See Also M-PSK TCM Decoder, Rectangular QAM TCM Decoder, poly2trellis

References [1] Biglieri, E., D. Divsalar, P. J. McLane, and M. K. Simon, Introduction
to Trellis-Coded Modulation with Applications, New York, Macmillan,
1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New
York, McGraw-Hill, 2001.

2-232

General TCM Encoder

Purpose

Library

Description

General
TCh

Convolutionally encode binary data and map using arbitrary
constellation

Trellis-Coded Modulation

The General TCM Encoder block implements trellis-coded modulation
(TCM) by convolutionally encoding the binary input signal and
mapping the result to an arbitrary signal constellation. The points

in the signal constellation are listed in set-partitioned order in the
Signal constellation parameter. This parameter is a complex vector
whose length, M, equals the number of possible output symbols from
the convolutional encoder. (That is, log,M is equal to n for a rate k/n
convolutional code.)

Input and Output Signals

If the convolutional encoder represents a rate k/n code, then the General
TCM Encoder block’s input must be a frame-based binary column vector
whose length is L*k for some positive integer L.

The output from the General TCM Encoder block is a frame-based
complex column vector of length L.

The input signal must be boolean.
Specifying the Encoder

To define the convolutional encoder, use the Trellis structure
parameter. This parameter is a MATLAB structure whose format is
described in the section “Trellis Description of a Convolutional Encoder”
in the Communications Toolbox documentation. You can use this
parameter field in two ways:

® If you want to specify the encoder using its constraint length,
generator polynomials, and possibly feedback connection polynomials,
then use a poly2trellis command within the Trellis structure
field. For example, to use an encoder with a constraint length of 7,
code generator polynomials of 171 and 133 (in octal numbers), and
a feedback connection of 171 (in octal), set the Trellis structure
parameter to

2-233

General TCM Encoder

2-234

poly2trellis(7,[171 133],171)

e If you have a variable in the MATLAB workspace that contains
the trellis structure, then enter its name as the Trellis structure
parameter. This way is faster because it causes Simulink to spend
less time updating the diagram at the beginning of each simulation,
compared to the usage in the previous bulleted item.

Signal Constellations

The trellis-coded modulation technique partitions the constellation into
subsets called cosets so as to maximize the minimum distance between
pairs of points in each coset.

Note When you set the Signal constellation parameter, you must
ensure that the constellation vector is already in set-partitioned order.
Otherwise, the block might produce unexpected or suboptimal results.

As an example, the diagram below shows one way to devise a
set-partitioned order for the points for an 8-PSK signal constellation.
The figure at the top of the tree is the entire 8-PSK signal constellation,
while the eight figures at the bottom of the tree contain one constellation
point each. Each level of the tree corresponds to a different bit in a
binary sequence (by,b,,b;), while each branch in a given level of the tree
corresponds to a particular value for that bit. Listing the constellation
points using the sequence at the bottom of the tree leads to the vector

exp(2*pi*j*[0 4 2 6 1 5 3 7]/8)

which is a valid value for the Signal constellation parameter in this
block.

General TCM Encoder

000 100 010 110 001 101 011 111

For other examples of signal constellations in set-partitioned order, see
[1] or the reference pages for theM-PSK TCM Encoder andRectangular

QAM TCM Encoder blocks.
Coding Gains

Coding gains of 3 to 6 decibels, relative to the uncoded case can be
achieved in the presence of AWGN with multiphase trellis codes [3].

2-235

General TCM Encoder

L]
DIO Iog E! Function Block Parameters: General TCM Encod x|
Box —General TCM Encoder [mask] [link]

Convolutionally encode binary data and perform signal mapping uzing the Signal
constellation parameter, which expects complex constellation paints in the
zet-partitioned order.

The Trellis structure parameter must be a valid MATLAB trellis structure. Ta check if a
shucture is & valid trellis structure, use the istrellis function in MATLAB.

Trellis structure:

Signal constellation:
|exp[2"pi"i"[0 4261537)/4)

Output data typel double LI

QK I Cancel Help | Apply |

Trellis structure
MATLAB structure that contains the trellis description of the
convolutional encoder.

Signal constellation
A complex vector that lists the points in the signal constellation
in set-partitioned order.

Output data type
The output type of the block can be specified as a single or
double. By default, the block sets this to double.

Pair Block General TCM Decoder

See Also M-PSK TCM Encoder, Rectangular QAM TCM Encoder, poly2trellis

References [1] Biglieri, E., D. Divsalar, P. J. McLane, and M. K. Simon, Introduction
to Trellis-Coded Modulation with Applications, New York, Macmillan,
1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New
York, McGraw-Hill, 2001.

2-236

General TCM Encoder

[3] Ungerboeck, G., “Channel Coding with Multilevel/Phase Signals”,
IEEE Trans. on Information Theory, Vol IT28, Jan. 1982, pp. 55-67.

2-237

GMSK Demodulator Baseband

Purpose

Library

Description

2-238

AL

GMSH

Demodulate GMSK-modulated data
CPM, in Digital Baseband sublibrary of Modulation

The GMSK Demodulator Baseband block demodulates a signal that
was modulated using the Gaussian minimum shift keying method. The
input is a baseband representation of the modulated signal.

The BT product, Pulse length, Symbol prehistory, and Phase
offset parameters are as described on the reference page for theGMSK
Modulator Baseband block.

Traceback Length and Output Delays

Internally, this block creates a trellis description of the modulation
scheme and uses the Viterbi algorithm. The Traceback length
parameter, D, in this block is the number of trellis branches used to
construct each traceback path. D influences the output delay, which
is the number of zero symbols that precede the first meaningful
demodulated value in the output.

¢ If the input signal is sample-based, then the delay consists of D+1
zero symbols.

e Ifthe input signal is frame-based, then the delay consists of D zero
symbols.

Inputs and Outputs

The input can be either a scalar or a frame-based column vector and
must be of type single or double. If the Qutput type parameter is set
to Integer, then the block produces values of 1 and -1. If the Output
type parameter is set to Bit, then the block produces values of 0 and 1.

Processing an Upsampled Modulated Signal

The input signal can be an upsampled version of the modulated signal.
The Samples per symbol parameter is the upsampling factor. It must
be a positive integer. For more information, see “Upsampled Signals
and Rate Changes” in Using the Communications Blockset.

GMSK Demodulator Baseband

Dialog
Box

JFunction Block Parameters: GMSK Demodulator Ba: x|
—GMSE Demodulator Baseband [mask)] [link]
Demodulate the GRSE modulated input signal uzing the Yiterbi algorithm. Traceback

length is the number of trellis branches that the algorithm wses to construct each
traceback path.

For zample-based input, the input must be a scalar. For frame-bazed input, the input
must be a column vectar.

I case of frame-based input, the width of the input frame represents the product of the
number of symbols and the Samples per symbal value.

I case of sample-bazed input, the sample time of the input is the symbal period divided
by the Samples per spmbol value.

The Symbol prehistary parameter is the data symbol(s] uzed before the start of the
simulation.

Olutput bype:
BT product:
E

Pulze length [symbol intervals]:
J4

Symbal prehistory:

Ji

Fhase offzet [rad):

Jo

Samples per symbal:

Ja

Traceback length:

J16

Olutput datatypel double LI

QK I Cancel Help | Apply |

Output type
Determines whether the output consists of bipolar or binary
values.

BT product
The product of bandwidth and time.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

2-239

GMSK Demodulator Baseband

Pair Block
See Also

References

2-240

Symbol prehistory
The data symbols used by the modulator before the start of the
simulation.

Phase offset (rad)
The initial phase of the modulated waveform.

Samples per symbol
The number of input samples that represent each modulated
symbol.

Traceback length
The number of trellis branches that the Viterbi Decoder block
uses to construct each traceback path.

Output data type
The output data type can be boolean, int8, int16, int32, or
double.

GMSK Modulator Baseband
CPM Demodulator Baseband, Viterbi Decoder

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital
Phase Modulation. New York: Plenum Press, 1986.

GMSK Modulator Baseband

Purpose
Library

Description

LI

GMSH

Modulate using Gaussian minimum shift keying method
CPM, in Digital Baseband sublibrary of Modulation

The GMSK Modulator Baseband block modulates using the Gaussian
minimum shift keying method. The output is a baseband representation
of the modulated signal.

The BT product parameter represents bandwidth multiplied by

time. This parameter is a nonnegative scalar. It is used to reduce the
bandwidth at the expense of increased intersymbol interference. The
Pulse length parameter measures the length of the Gaussian pulse
shape, in symbol intervals. For an explanation of the pulse shape, see
the work by Anderson, Aulin, and Sundberg among the references listed
below. The frequency pulse shape is defined by the following equations.

T T
Lol omp, 2 Q|2nB)

t) = — _
80 =519 2B =55 N

Q(t) — —7‘2 /2dt

71
—e
-! N2m
The Symbol prehistory parameter is a scalar or vector that specifies
the data symbols used before the start of the simulation, in reverse

chronological order. If it is a vector, then its length must be one less
than the Pulse length parameter.

In this block, a symbol of 1 causes a phase shift of n/2 radians. The
Phase offset parameter is the initial phase of the output waveform,
measured in radians.

Input Attributes

The input can be either a scalar or a frame-based column vector. If the
Input type parameter is set to Integer, then the block accepts values

2-241

GMSK Modulator Baseband

Dialog
Box

2-242

of 1 and -1. If the Input type parameter is set to Bit, then the block
accepts values of 0 and 1.

Upsampling the Modulated Signal

This block can output an upsampled version of the modulated signal.
The Samples per symbol parameter is the upsampling factor. It must
be a positive integer. For more information, see “Upsampled Signals
and Rate Changes” in Using the Communications Blockset.

IFunction Block Parameters: GMSK Modulator Ba x|

—GMSE Modulator Bazeband [maszk] (link]

Modulate the input zsignal uging the Gaussian minimurn shift keying method.

For zample-based input, the input must be a scalar. For frame-bazed input, the input
must be a column vectar.

I cage of frame-based input, the width of the output frame equals the product of the
number of symbols and the Samples per symbal value.

I case of sample-bazed input, the output sample time equals the symbal period
divided by the Samples per symbal value.

The Symbol prehistary parameter is the data symbol(s] uzed before the start of the

simulation.
—F
input type:[EEEERRRCGCGCGGGGGGG ~
BT product:
E

Pulze length [symbol intervals]:
J4

Symbal prehistory:

Ji

Fhase offzet [rad):

Jo
Samples per symbal:
Ja
Output data type:l double LI
QK I Cancel Help | Apply |
Input type

Indicates whether the input consists of bipolar or binary values.

GMSK Modulator Baseband

Pair Block
See Also

References

BT product
The product of bandwidth and time.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
The data symbols used before the start of the simulation, in
reverse chronological order.

Phase offset (rad)
The initial phase of the output waveform.

Samples per symbol
The number of output samples that the block produces for each
integer or bit in the input.

Output data type
The output type of the block can be specified as a single or
double. By default, the block sets this to double.

GMSK Demodulator Baseband
CPM Modulator Baseband

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital
Phase Modulation. New York: Plenum Press, 1986.

2-243

Gold Sequence Generator

Purpose Generate Gold sequence from set of sequences
Librclry Sequence Generators sublibrary of Comm Sources
Description The Gold Sequence Generator block generates a Gold sequence. Gold
sequences form a large class of sequences that have good periodic
Gold Sequance cross-correlation properties.

Fenerator

The Gold sequences are defined using a specified pair of sequences

u and v, of period N = 2" - 1, called a preferred pair, as defined in
“Preferred Pairs of Sequences” on page 2-247 below. The set G(u, v) of
Gold sequences is defined by

G(u,v) = {u,v,u@v,u@Tv,u@Tzv,...,uGr) N1y}

where T represents the operator that shifts vectors cyclically to the left

by one place, and @ represents addition modulo 2. Note that G(u,v)
contains N + 2 sequences of period N. The Gold Sequence Generator
block outputs one of these sequences according to the block’s parameters.

Gold sequences have the property that the cross-correlation between
any two, or between shifted versions of them, takes on one of three
values: -t(n), -1, or t(n) - 2, where

1+27/2 4 even
t(n) =
1+2(n+2)/2 nOdd
The Gold Sequence Generator block uses two PN Sequence Generator
blocks to generate the preferred pair of sequences, and then XORs these
sequences to produce the output sequence, as shown in the following
diagram.

2-244

Gold Sequence Generator

FM Sequence
Generator

FM Sequence

Generatord XOR

Out

FM Sequence
Generator

FM Sequence
Generator2

You can specify the preferred pair by the Preferred polynomial [1]
and Preferred polynomial [2] parameters in the dialog for the Gold
Sequence Generator block. These polynomials, both of which must have
degree n, describe the shift registers that the PN Sequence Generator
blocks use to generate their output. For more details on how these
sequences are generated, see the reference page for the PN Sequence
Generator block. You can specify the preferred polynomials using either
of the following formats:

® A vector that lists the coefficients of the polynomial in descending
order of powers. The first and last entries must be 1. Note that the
length of this vector is one more than the degree of the generator
polynomial.

® A vector containing the exponents of z for the nonzero terms of the

polynomial in descending order of powers. The last entry must be 0.

For example, the vectors [5 2 0] and [1 0 0 1 0 1] both represent
the polynomial z% + 22 + 1.

The following table provides a short list of preferred pairs.

Preferred Preferred
n N Polynomial[1] Polynomial[2]
5 31 [5 2 0] [543 2 0]
6 63 [6 1 0] [6 52 1 0]
7 127 [7 3 0] [7 321 0]

2-245

Gold Sequence Generator

Preferred Preferred
N Polynomial[1] Polynomial[2]
9 511 [9 4 0] [9 6 4 3 0]
10 1023 [10 3 0] [10 8 3 2 0]
11 2047 [11 2 0] [11 8 5 2 0]

The Initial states[1] and Initial states[2] parameters are vectors
specifying the initial values of the registers corresponding to Preferred
polynomial [1] and Preferred polynomial [2], respectively. These
parameters must satisfy these criteria:

e All elements of the Initial states[1] and Initial states[2] vectors
must be binary numbers.

® The length of the Initial states[1] vector must equal the degree of the
Preferred polynomial[1l], and the length of the Initial states[2]
vector must equal the degree of the Preferred polynomial[2].

Note At least one element of the Initial states vectors must be
nonzero in order for the block to generate a nonzero sequence. That
is, the initial state of at least one of the registers must be nonzero.

The Sequence index parameter specifies which sequence in the set
G(u, v) of Gold sequences the block outputs. The range of Sequence

index is [-2, -1, 0, 1, 2, ..., 2"-2]. The correspondence between
Sequence index and the output sequence is given in the following
table.

Sequence Index Output Sequence

-2 u

-1 v

0 u®v

2-246

Gold Sequence Generator

Sequence Index Output Sequence
1 u®Tv
2
u®T?
1.2 i
u®T? %

You can shift the starting point of the Gold sequence with the Shift
parameter, which is an integer representing the length of the shift.

You can use an external signal to reset the values of the internal shift
register to the initial state by selecting the Reset on nonzero input
check box. This creates an input port for the external signal in the Gold
Sequence Generator block. The way the block resets the internal shift
register depends on whether its output signal and the reset signal are
sample-based or frame-based. The following example demonstrates
the possible alternatives. See “Example: Resetting a Signal” on page
2-456 for an example.

Preferred Pairs of Sequences
The requirements for a pair of sequences u, v of period N = 2"-1 to be a
preferred pair are as follows:
® n is not divisible by 4
* v = ulq], where
= ¢ is odd
= q=251orq=2%2K1

= v is obtained by sampling every qth symbol of u

1 n=1mod2

¢ godln,k) = {2 n =2mod4

2-247

Gold Sequence Generator

L
DIG IOg = Source Block Parameters: Gold Sequence Generat x|

Box —Gold Sequence Generator [mask] [link]

Generate a Gold sequence from a set of sequences by specifying a preferred pair of
polynomials.

The polynomial parameter values reprezent the shift register connections. Enter these
values az either a binary vector or a descending ordered polynomial to indicate the
connection points.

The initial states parameters are binary vectors that represzent the starting state of the
zhift registers.

The sequence index parameter denotes the single sequence outputted from the set
of Gold sequences. Specify it as a scalar integer in the range [-2, 2°n-2] where n iz
the degree of the generator polynomial. The index values -2 and -1 corespond ta the
first and zecond P sequences az generated by the preferred polynomials (1] and
[2]. respectively.

The shift parameter iz a scalar integer that produces an offset in the sequence.

Freferred polynomial [1]:
[1 00001 1]

Initial states [1]:
Jimooooi)

Freferred polynomial [2]:
Jrtoo111)

Initial states [2]:
Jooooo1

Sequence index:

Sample time:
Ji

[~ Frame-based cutputs

Samples per frame:
Ji

[~ Reset on nonzera input

Output data type: | double LI

QK I Cancel | Help |

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

2-248

Gold Sequence Generator

Preferred polynomial[1]
Vector specifying the polynomial for the first sequence of the
preferred pair.

Initial states[1]
Vector of initial states of the shift register for the first sequence of
the preferred pair.

Preferred polynomial[2]
Vector specifying the polynomial for the second sequence of the
preferred pair.

Initial states[2]
Vector of initial states of the shift register for the second sequence
of the preferred pair.

Sequence index
Integer specifying the index of the output sequence from the set
of sequences.

Shift
Integer scalar that determines the offset of the Gold sequence
from the initial time.

Sample time
Period of each element of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field
is active only if you select the Frame-based outputs check box.

Reset on nonzero input
When selected, you can specify an input signal that resets the
internal shift registers to the original values of the Initial states
parameter

Output data type
The output type of the block can be specified as a boolean or
double. By default, the block sets this to double.

2-249

Gold Sequence Generator

See Also Kasami Sequence Generator, PN Sequence Generator

References [1] Proakis, John G., Digital Communications, Third edition, New York,
McGraw Hill, 1995.

[2] Gold, R., "Maximal Recursive Sequences with 3-valued Recursive
Cross-Correlation Functions," IEEE Trans. Infor. Theory, Jan., 1968,
pp. 154-156.

[3] Gold, R., "Optimal Binary Sequences for Spread Spectrum
Multiplexing, IEEE Trans. Infor. Theory, Oct., 1967, pp. 619-621.

[4] Sarwate, D.V., and M.B. Pursley, "Crosscorrelation Properties of

Pseudorandom and Related Sequences," Proc. IEEE, Vol. 68, No. 5,
May, 1980, pp. 583-619.

2-250

Hadamard Code Generator

Purpose
Library

Description

Hadamard
Code Generator

Generate Hadamard code from orthogonal set of codes
Sequence Generators sublibrary of Comm Sources

The Hadamard Code Generator block generates a Hadamard code
from a Hadamard matrix, whose rows form an orthogonal set of codes.
Orthogonal codes can be used for spreading in communication systems
in which the receiver is perfectly synchronized with the transmitter.
In these systems, the despreading operation is ideal, as the codes are
decorrelated completely.

The Hadamard codes are the individual rows of a Hadamard matrix.
Hadamard matrices are square matrices whose entries are +1 or -1, and
whose rows and columns are mutually orthogonal. If N is a nonnegative
power of 2, the N-by-N Hadamard matrix, denoted Hy, is defined
recursively as follows.

Hy =[1]
Hy Hpy
Hyy =[H o }
N —Hy

The N-by-N Hadamard matrix has the property that
HH," = NI

where I is the N-by-N identity matrix.

The Hadamard Code Generator block outputs a row of Hy. The output
is bipolar. You specify the length of the code, N, by the Code length
parameter. The Code length must be a power of 2. You specify the
index of the row of the Hadamard matrix, which is an integer in the
range [0, 1, ... , N-1], by the Code index parameter.

2-251

Hadamard Code Generator

L]
DIG Iog E! Source Block Parameters: Hadamard Code G x|
Box —Hadamard Code Generator [mask] [link]

Generate a Hadamard Code from an orthogonal set of codes.

The code index parameter iz an integer scalar in the range [0, M-1] where M is the
code length. When incremented by 1, it comesponds to the row index of &
Hadamard matrix of size M = M. M must be an integer power of 2.

The output code i in & bipolar format with 2 40, 1} ta {1, -1} element mapping.

Code length:
Code index:
J60
Sample time:
Ji

[Frame-based outputs

Samples per frame:
Ji

Output data twpe: | double LI

QK I Cancel | Help |

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Code length
A positive integer that is a power of two specifying the length
of the Hadamard code.

Code index
An integer between 0 and N-1, where N is the Code length,
specifying a row of the Hadamard matrix.

Sample time
A positive real scalar specifying the sample time of the output
signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

2-252

Hadamard Code Generator

Samples per frame
The number of samples in a frame-based output signal. This field
is active only if you select the Frame-based outputs check box.

Output data type
The output type of the block can be specified as an int8 or double.
By default, the block sets this to double.

See Also OVSF Code Generator, Walsh Code Generator

2-253

Hamming Decoder

Purpose
Library

Description

2-254

Hamming
Decoder

Decode Hamming code to recover binary vector data
Block sublibrary of Channel Coding

The Hamming Decoder block recovers a binary message vector from a

binary Hamming codeword vector. For proper decoding, the parameter
values in this block should match those in the correspondingHamming
Encoder block.

If the Hamming code has message length K and codeword length N,
then N must have the form 2M-1 for some integer M greater than or
equal to 3. Also, K must equal N-M.

The input must contain exactly N elements. If it is frame-based, then it
must be a column vector. The output is a vector of length K.

The coding scheme uses elements of the finite field GF(2M). You can
either specify the primitive polynomial that the algorithm should use,
or you can rely on the default setting:

® To use the default primitive polynomial, simply enter N and K as the
first and second dialog parameters, respectively. The algorithm uses
gfprimdf (M) as the primitive polynomial for GF(2M).

® To specify the primitive polynomial, enter N as the first parameter
and a binary vector as the second parameter. The vector represents
the primitive polynomial by listing its coefficients in order of
ascending exponents. You can create primitive polynomials using the
gfprimfd function in the Communications Toolbox.

This block supports double and boolean data types.

Hamming Decoder

L]
Dla Iog EBlock Parameters: Hamming Decoder 2=l
B —Hamming Decoder [mazk]
oX } : :
Fiecover a binary message vectar from a binary Hamming codeword vectar. The
message iz of length K. and the codeword iz of length M, where M hag the form
2°M-1. for some integer M greater than or equal ta 3. K must equal N-M.
The input must contain exactly M elements. If it i frame-based, then it must be a
columh vechar.
P.
Codeword length M:
]
Message length K., or M-degree primitive polynomial:
afprimfd(3, min')
Ok | Lancel | Help Apply

Codeword length N
The codeword length N, which is also the input vector length.

Message length K, or M-degree primitive polynomial
Either the message length, which is also the output vector length;

or a binary vector that represents a primitive polynomial for

GF(2M).

Hamming Encoder

Pair Block

See Also hammgen (Communications Toolbox)

2-255

Hamming Encoder

Purpose
Library

Description

2-256

Hamming
Encoder

Create Hamming code from binary vector data
Block sublibrary of Channel Coding

The Hamming Encoder block creates a Hamming code with message
length K and codeword length N. The number N must have the form
2M.1, where M is an integer greater than or equal to 3. Then K equals
N-M.

The input must contain exactly K elements. If it is frame-based, then it
must be a column vector. The output is a vector of length N.

The coding scheme uses elements of the finite field GF(2M). You can
either specify the primitive polynomial that the algorithm should use,
or you can rely on the default setting:

® To use the default primitive polynomial, simply enter N and K as the
first and second dialog parameters, respectively. The algorithm uses
gfprimdf (M) as the primitive polynomial for GF(2M).

® To specify the primitive polynomial, enter N as the first parameter
and a binary vector as the second parameter. The vector represents
the primitive polynomial by listing its coefficients in order of
ascending exponents. You can create primitive polynomials using the
gfprimfd function in the Communications Toolbox.

This block supports double and boolean data types.

Hamming Encoder

L]
Dla Iog EBlock Parameters: Hamming Encoder 2=l
Box —Hamming Encoder [mazk)]
Create a Hamming code with message length K and codeword length M. The
nurnber M must have the form 2°M-1, where M iz an integer greater than or equal to
3. K must equal M-k,
The input must contain exactly K. elements. [f it iz frame-bazed, then it must be a
columh vechar.
P.
Codeword length M:
]
Message length K., or M-degree primitive polynomial:
afprimfd(3, min')
Ok | Lancel | Help Apply

Codeword length N
The codeword length, which is also the output vector length.

Message length K, or M-degree primitive polynomial
Either the message length, which is also the input vector length;

or a binary vector that represents a primitive polynomial for

GF(2M).

Hamming Decoder

Pair Block

See Also hammgen (Communications Toolbox)

2-257

Helical Deinterleaver

Purpose

Library

Description

2-258

Helical
Deinterleaver

Restore ordering of symbols permuted by helical interleaver
Convolutional sublibrary of Interleaving

The Helical Deinterleaver block permutes the symbols in the input
signal by placing them in an array row by row and then selecting groups
in a helical fashion to send to the output port.

The block uses the array internally for its computations. If C is the
Number of columns in helical array parameter, then the array has
C columns and unlimited rows. If N is the Group size parameter, then
the block accepts an input of length C*N at each time step and inserts
them into the next N rows of the array. The block also places the Initial
condition parameter into certain positions in the top few rows of the
array (not only to accommodate the helical pattern but also to preserve
the vector indices of symbols that pass through the Helical Interleaver
and Helical Deinterleaver blocks in turn).

The output consists of consecutive groups of N symbols. Counting from
the beginning of the simulation, the block selects the kth output group
in the array from column k mod C. The selection is helical because of
the reduction modulo C and because the first symbol in the kth group is
in row 1+(k-1)*s, where s is the Helical array step size parameter.

The number of elements of the input vector must be C times N. If the
input is frame-based, then it must be a column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

Delay of Interleaver-Deinterleaver Pair

After processing a message with the Helical Interleaver block and the
Helical Deinterleaver block, the deinterleaved data lags the original
message by

CN[S(C_D]
N

Helical Deinterleaver

Dialog
Box

samples. Before this delay elapses, the deinterleaver output is either
the Initial condition parameter in the Helical Deinterleaver block or
the Initial condition parameter in the Helical Interleaver block.

If your model incurs an additional delay between the interleaver output
and the deinterleaver input, then the restored sequence lags the
original sequence by the sum of the additional delay and the amount
in the formula above. For proper synchronization, the delay between
the interleaver and deinterleaver must be m*C*N for some nonnegative
integer m. You can use the Delay block in the Signal Processing
Blockset to adjust delays manually, if necessary.

E1Block Parameters: Helical Deinterleaver 2=l

—Helical Deinterl [maszk]

Fiestore the ordering of spmbolz input to a matching helical interleaver. The operation
of a helical deinterleaver iz defined by a helical aray with C columnz. The input ta the
helical deinterleaver must hawve width C*M. Received symbols are entered row-by-row
inta the helical aray. The block processes the symbals in the helical array in groups
of size M and assighs an index k to each group, beginning with k=1 at the start of the
simulation. After a delay, the kth output group is read sequentially down calumn k
mod C of the helical array and beginning in row 1+[k-1]%z, where z iz the helical aray
step size.

The helical aray step size must be a nonnegative integer and the initial condition
must be a scalar.

=

Mumber of columnz in helical anray:
Group size:

J4

Helical array step size:
Jh

Initial condition:
Jo

Ok | Lancel | Help | Apply |

Number of columns in helical array
The number of columns, C, in the helical array.

Group size
The size, N, of each group of symbols. The input width is C times
N.

2-259

Helical Deinterleaver

Pair Block
See Also

References

2-260

Helical array step size
The number of rows of separation between consecutive output
groups as the block selects them from their respective columns of
the helical array.

Initial condition
A scalar that fills the array before the first input is placed.

Helical Interleaver
General Multiplexed Deinterleaver

[1] Berlekamp, E. R. and P. Tong. "Improved Interleavers for Algebraic
Block Codes." U. S. Patent 4559625, Dec. 17, 1985.

Helical Interleaver

Purpose
Library

Description

Helical
Interleaver

Permute input symbols using helical array
Convolutional sublibrary of Interleaving

The Helical Interleaver block permutes the symbols in the input signal
by placing them in an array in a helical fashion and then sending rows
of the array to the output port.

The block uses the array internally for its computations. If C is the
Number of columns in helical array parameter, then the array has
C columns and unlimited rows. If N is the Group size parameter,
then the block accepts an input of length C*N at each time step and
partitions the input into consecutive groups of N symbols. Counting
from the beginning of the simulation, the block places the kth group in
the array along column k mod C. The placement is helical because of
the reduction modulo C and because the first symbol in the kth group is
in row 1+(k-1)*s, where s is the Helical array step size parameter.
Positions in the array that do not contain input symbols have default
contents specified by the Initial condition parameter.

The block sends C*N symbols from the array to the output port by
reading the next N rows sequentially. At a given time step, the output
symbols might be the Initial condition parameter value, symbols
from that time step’s input vector, or symbols left in the array from a
previous time step.

The number of elements of the input vector must be C times N. If the
input is frame-based, then it must be a column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

2-261

Helical Interleaver

Dialog
Box

Examples

2-262

E1Block Parameters: Helical Interleaver 2=l

—Helical Interl [mazk]

Permute input vector uging a helical aray with C columns. The input to the helical
interleaver must have width M. The block processes the input in groups of size M
and assighs an index to each group, beginning with k=1 at the start of the simulation.
The kth group of M spmbols iz entered sequentially down column k mod C of the
helical array and beginning in row 1+[k-11%s, where s is the helical aray step size. The
helical interleaver output iz then read row-by-row from the helical array.

The helical aray step size must be a nonnegative integer and the initial condition must
be a scalar.

P.
Mumber of columnz in helical array:
Group size:

J4
Helical array step size:
Jh

Initial condition:
Jo

Ok | Lancel | Help | Apply |

Number of columns in helical array
The number of columns, C, in the helical array.

Group size
The size, N, of each group of input symbols. The input width is
C times N.

Helical array step size
The number of rows of separation between consecutive input
groups in their respective columns of the helical array.

Initial condition
A scalar that fills the array before the first input is placed.

Suppose that C = 3, N = 2, the Helical array step size parameter is 1,
and the Initial condition parameter is -1. After receiving inputs of
[1:6]',[7:12]"',and [13:18] ', the block’s internal array looks like the
schematic below. The coloring of the inputs and the array indicate how
the input symbols are placed within the array. The outputs at the first
three time steps are [1; -1; -1; 2; 3; -1],[7; 4; 5; 8; 9; 6],

Helical Interleaver

and [13; 10; 11; 14; 15; 12]. (The outputs are not color-coded in
the schematic.)

Inputs Block's Internal Array Outputs from successive
rows of array

7 1 7 1
8 2 4 1
9 3 5 -1
_ — — —
10 4 8 2
1 5 9 3
12 6 6 -1
Pair Block Helical Deinterleaver
See Also General Multiplexed Interleaver
References [1] Berlekamp, E. R. and P. Tong. "Improved Interleavers for Algebraic

Block Codes." U. S. Patent 4559625, Dec. 17, 1985.

2-263

Ideal Rectangular Pulse Filter

Purpose Shape input signal using ideal rectangular pulses
Librclry Comm Filters
Description The Ideal Rectangular Pulse Filter block upsamples and shapes the

input signal using rectangular pulses. The block replicates each
ve—— input sample N times, where N is the Pulse length parameter. After
Pulse Filter replicating input samples, the block can also normalize the output
signal and/or apply a linear amplitude gain.

If the Pulse delay parameter is nonzero, then the block outputs that
number of zeros at the beginning of the simulation, before starting to
replicate any of the input values.

Inputs and Outputs

The input can be either a scalar or a frame-based column vector.
double, single, and fixed-point data types are supported.

¢ If the input is sample-based, then the output sample time is 1/N
times the input sample time. The output dimensions match the input
dimensions. You must set the Input sampling mode parameter to
Sample-based.

e If the input is a frame-based k-by-1 matrix, then the output is a
frame-based k*N-by-1 matrix. The output frame period matches
the input frame period. You must set the Input sampling mode
parameter to Frame-based.

The vector size (in frame-based mode), the pulse length, and the pulse
delay are mutually independent. They do not need to satisfy any
conditions with respect to each other.

Normalization Methods

You determine the block’s normalization behavior using the Normalize
output signal and Linear amplitude gain parameters.

2-264

Ideal Rectangular Pulse Filter

¢ If you clear the Normalize output signal check box, then the block
multiplies the set of replicated values by the Linear amplitude
gain parameter. This parameter must be a scalar.

¢ If you select Normalize output signal, then the Normalization
method parameter appears. The block scales the set of replicated
values so that one of these conditions is true:

= The sum of the samples in each pulse equals the original input
value that the block replicated.

= The energy in each pulse equals the energy of the original input
value that the block replicated. That is, the sum of the squared
samples in each pulse equals the square of the input value.

After the block applies the scaling specified in the Normalization
method parameter, it multiplies the scaled signal by the constant
scalar value specified in the Linear amplitude gain parameter.

.
Dla Iog [=Block Parameters: Ideal Rectangular Pulse Fi 21l
r—ldeal Rectangular Pulze Filter [mazk)]
Box ’

Upsample the input signal using ideal rectangular pulses.

This block replicates each input sample N times, where N iz the pulze length. This
block can alzo normalize the output signal and apply a linear amplitude gain.

=
F

Pulze length [number of samples]:

£

Pulze delay [number of zamples]:
Jo

Input zampling mode: I Frame-bazed LI

V' Nomalize cutput signal

Mormalization method: I Sum of zamples LI

Linear amplitude gair:

Jh

Ok I Lancel Help Apply

2-265

Ideal Rectangular Pulse Filter

Examples

2-266

Pulse length
The number of samples in each output pulse; that is, the number
of times the block replicates each input value when creating the
output signal.

Pulse delay
The number of zeros that appear in the output at the beginning of
the simulation, before the block replicates any input values.

Input sampling mode
The type of input signal: Frame-based or Sample-based.

Normalize output signal
If you select this, then the block scales the set of replicated values
before applying the linear amplitude gain.

Normalization method
The quantity that the block considers when scaling the set of
replicated values. Choices are Sum of samples and Energy per
pulse. This field appears only if you select Normalize output
signal.

Linear amplitude gain
A positive scalar used to scale the output signal.

If Pulse length is 4 and Pulse delay is the scalar 3, then the table
below shows how the block treats the beginning of a ramp (1, 2, 3,...) in
several situations. (The values shown in the table do not reflect vector
sizes but merely indicate numerical values.)

Normalization Linear Amplitude | First Several
Method, If Any Gain Output Values
None (Normalize 1 0,0,0,1,1,1,1,2,2,
output signal 2,2,3,3,3,3,...
cleared)

None (Normalize 10 0,0,0,10, 10, 10, 10,
output signal 20, 20, 20, 20, 30, 30,
cleared) 30, 30,...

Ideal Rectangular Pulse Filter

Normalization
Method, If Any

Linear Amplitude
Gain

First Several
Output Values

Sum of samples

1

0,0,0,0.25, 0.25,

0.25,0.25,0.5,0.5,
0.5,0.5,0.75,0.75,
0.75, 0.75,..., where

0.25%4=1

Sum of samples 10 0,0,0,2.5,2.5, 2.5,
2.5,5,5,5,5,7.5,
7.5,7.5,7.5,.

Energy per pulse 1 0,0,0,0.5, 0.5,
0.5,0.5,1.0,1.0,
1.0,1.0, 1.5, 1.5,
1.5, 1.5,..., where
(0.5)"2*4=1"2

Energy per pulse 10 0,0,0,5,5,5,5, 10,
10, 10, 10, 15, 15, 15,
15,...

See Also Upsample, Integrate and Dump

2-267

Insert Zero

Purpose Distribute input elements in output vector
Librclry Sequence Operations
Description The Insert Zero block constructs an output vector by inserting zeros

among the elements of the input vector. The input can be real or
complex. The block determines where to place the zeros by using the
Insert zero vector parameter. The Insert zero vector parameter is a
binary vector whose elements are arranged so that:

Ingent Zero

® Each 1 indicates that the block should place the next element of the
input in the output vector

® Each 0 indicates that the block should place a 0 in the output vector

If the input signal is sample-based, then the input vector length must
equal the number of 1s in the Insert zero vector parameter.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

To implement punctured coding using the Puncture and Insert Zero
blocks, you should use the same vector for the Insert zero vector
parameter in this block and for the Puncture vector parameter in
the Puncture block.

Frame-Based Processing

If the input signal is frame-based, then both it and the Insert zero
vector parameter must be column vectors. The number of 1s in the
Insert zero vector parameter must divide the input vector length. If
the input vector length is greater than the number of 1s in the Insert
zero vector parameter, then the block repeats the insertion pattern
until it has placed all input elements in the output vector.

2-268

Insert Zero

Dialog
Box

Examples

EBlock Parameters: Insert Zero

21|

—Inzert Zero [mask)

Distribute input elements in output vector. The binary Inzert zera vector indicates
placement of zeros and input elements.

For zample-based inputs, the length of the input must equal the length of the Insert
zefo vectar.

For frame-based inputs, if the number of 1's in the Insert zero vectar iz less than the
length of the input signal, the block repeats the Insert zera pattern to output all input
elements.

=

Inzert zero vecton:

110101

Ok | Lancel Help Apply

Insert zero vector

A binary vector whose pattern of Os and 1s indicates where the
block should place either Os or input vector elements, respectively,

in the output vector.

If the Insert zero vector parameter is the six-element vector
[1,0,1,1,1,0], then the block inserts zeros after the first and last
elements of each consecutive grouping of four input elements. It
considers groups of four elements because the Insert zero vector

parameter has four 1s.

The diagram below depicts the block’s operation using this Insert zero
vector parameter. Notice that the insertion pattern applies twice.

2-269

Insert Zero

|
Group of 4 Group of 4
— "
(13457900
!

N
Insert Zero Shading Key for Output Vector
< = Inserted zero
l . = Entry from input vector

A\ AN J
i i

Compare this example with that on the reference page for the Puncture
block.

See Also Puncture

2-270

Integer-Input RS Encoder

Purpose
Library

Description

RS encoder

Create Reed-Solomon code from integer vector data
Block sublibrary of Channel Coding

The Integer-Input RS Encoder block creates a Reed-Solomon code with
message length K and codeword length N. You specify both N and K
directly in the block dialog. The symbols for the code are integers
between 0 and 2V-1, which represent elements of the finite field GF(2M).
Restrictions on M and N are described in “Restrictions on M and the
Codeword Length N” on page 2-272 below. The difference N - K must
be an even integer.

The input and output are integer-valued signals that represent
messages and codewords, respectively. The input must be a frame-based
column vector whose length is an integer multiple of K. The block can
accept the data types int8, uint8, int16, uint16, int32, uint32,
single, and double. The output is a frame-based column vector whose
length is the same integer multiple of N, and whose data type is
inherited from the input. For more information on representing data
for Reed-Solomon codes, see the section “Integer Format (Reed-Solomon
Only)” in Using the Communications Blockset.

The default value of M is the smallest integer that is greater than or
equal to log2(N+1), that is, ceil(log2(N+1)). You can change the value
of M from the default by specifying the primitive polynomial for GF(2M),
as described in “Specifying the Primitive Polynomial” on page 2-271
below. If N is less than 2M-1, the block uses a shortened Reed-Solomon
code.

An (N, K) Reed-Solomon code can correct up to floor ((N-K)/2) symbol
errors (not bit errors) in each codeword.

Specifying the Primitive Polynomial

You can specify the primitive polynomial that defines the finite

field GF(2V), corresponding to the integers that form messages and
codewords. To do so, first select Specify primitive polynomial. Then,
in the Primitive polynomial field, enter a binary row vector that
represents a primitive polynomial over GF(2) of degree M, in descending

2-271

Integer-Input RS Encoder

2-272

order of powers. For example, to specify the polynomial x>+x+1, enter
the vector [1 0 1 1].

If you do not select Specify primitive polynomial, the

block uses the default primitive polynomial of degree M =
ceil(log2(N+1)). You can display the default polynomial by entering
primpoly(ceil(log2(N+1))) at the MATLAB prompt.

Restrictions on M and the Codeword Length N

The restrictions on the degree M of the primitive polynomial and the
codeword length N are as follows:

¢ If you do not select Specify primitive polynomial, N must lie in
the range 3 < N < 2161,

® Ifyou do select Specify primitive polynomial, N must lie in the
range 3 <N < 2M-1 and M must lie in the range 3 <M < 16.

Specifying the Generator Polynomial

You can specify the generator polynomial for the Reed-Solomon code.
To do so, first select Specify generator polynomial. Then, in the
Generator polynomial field, enter an integer row vector whose
entries are between 0 and 2M-1. The vector represents a polynomial,

in descending order of powers, whose coefficients are elements of
GF(2M) represented in integer format. See the section “Integer Format
(Reed-Solomon Only)” for more information about integer format. The
generator polynomial must be equal to a polynomial with a factored form

g(x) = (x+AP)(x+AP)(x+A"?)...(x+APNEL)

where A is the primitive element of the Galois field over which the input
message is defined, and b is an integer.

If you do not select Specify generator polynomial, the block uses the
default generator polynomial, corresponding to b=1, for Reed-Solomon
encoding. You can display the default generator polynomial by entering
rsgenpoly(N1,K1), where N1 = 2”°M-1 and K1 = K+(N1-N), at the
MATLAB prompt, if you are using the default primitive polynomial. If

Integer-Input RS Encoder

Examples

the Specify primitive polynomial box is selected, and you specify
the primitive polynomial specified as poly, the default generator
polynomial is rsgenpoly (N1,K1,poly).

Suppose M = 3, N =231 =7, and K = 5. Then a message is a vector of
length 5 whose entries are integers between 0 and 7. A corresponding
codeword is a vector of length 7 whose entries are integers between 0
and 7. The following figure illustrates possible input and output signals
to this block when Codeword length N is set to 7, Message length K
is set to 5, and the default primitive and generator polynomials are used.

oS N U W N

6
1
4 |__message
0
4

t=1 t=0

B——=H

RS encoder

code

o N U LN

—

2-273

Integer-Input RS Encoder

Dialog
Box

2-274

EBlock Parameters: Integer-Input RS Encoder 2=l

—Integer-lnput RS Encoder [mask)

Encode the message in the input vector using an [M.K] Feed-Solomon encoder with
the narrow-gense generator polynomial. The input must be a frame-based column
wector with an integer multiple of K elements. Each group of K input elements
represents one meszage word to be encoded. Each symbal must have
ceilllog2(M+1]] bits.

The optional ‘Primitive polynomial' parameter iz a row vector that represents the
binary coefficients of the primitive polpnomial in order of descending powers. ‘When
such a user-defined Primitive polynomial is provided, the number of bitz in each input
zymbol must equal the order of the Primitive polynomial instead.

The optional 'Generator polynomial' parameter is a row vector that represents the
coefficients of the generator polynomial in order of descending powers. Each
coefficient iz an element of the Galoiz field defined by the primtive polynomial

=) |
F

Codeword length M:
]
Meszage length K:

|2

[T Specify primitive polynornial

Frimitive polynomial:
oo
™ Specify generator polynomial

Generator polynomial:

|rsgenp0ly[?,3]

Ok | Lancel | Help Apply

Codeword length N
The codeword length.

Message length K
The message length.

Specify primitive polynomial
When you select this box, you can specify the primitive polynomial
as a binary row vector.

Primitive polynomial
Binary row vector representing the primitive polynomial in
descending order of powers.

Specify generator polynomial
When you select this box, you can specify the generator polynomial
as an integer row vector.

Integer-Input RS Encoder

Generator polynomial
Integer row vector, whose entries are in the range from 0 to 2M-1,
representing the generator polynomial in descending order of

powers.
Pair Block Integer-Output RS Decoder
See Also Binary-Input RS Encoder

2-275

Integer-Output RS Decoder

Purpose

Library

Description

2-276

E:::-E

RS Decaoder gy

Decode Reed-Solomon code to recover integer vector data
Block sublibrary of Channel Coding

The Integer-Output RS Decoder block recovers a message vector
from a Reed-Solomon codeword vector. For proper decoding,
the parameter values in this block should match those in the
correspondingInteger-Input RS Encoder block.

The Reed-Solomon code has message length K and codeword length N.
You specify both N and K directly in the block dialog. The symbols for
the code are integers between 0 and 2Y-1, which represent elements
of the finite field GF(2M). Restrictions on M and N are described in
“Restrictions on M and the Codeword Length N” on page 2-272 below.
The difference N - K must be an even integer.

The input and output are integer-valued signals that represent
messages and codewords, respectively. The input must be a frame-based
column vector whose length is an integer multiple of K. The block can
accept the data types int8, uint8, int16, uint16, int32, uint32,
single, and double. The output is a frame-based column vector whose
length is the same integer multiple of N, and whose data type is
inherited from the input. For more information on representing data
for Reed-Solomon codes, see the section “Integer Format (Reed-Solomon
Only)” in Using the Communications Blockset.

The default value of M is ceil(log2(N+1)), that is, the smallest integer
greater than or equal to log2(N+1). You can change the value of M
from the default by specifying the primitive polynomial for GF(2M), as
described in “Specifying the Primitive Polynomial” on page 2-271 below.
If N is less than 2M-1, the block uses a shortened Reed-Solomon code.

You can also specify the generator polynomial for the Reed-Solomon
code, as described in “Specifying the Generator Polynomial” on page
2-272.

An (N, K) Reed-Solomon code can correct up to floor ((N-K)/2) symbol
errors (not bit errors) in each codeword.

Integer-Output RS Decoder

Dialog
Box

The second output is the number of errors detected during decoding
of the codeword. A -1 indicates that the block detected more errors
than it could correct using the coding scheme. An (N,K) Reed-Solomon
code can correct up to floor((N-K)/2) symbol errors (not bit errors)
in each codeword. The data type of this output is also inherited from

the input signal.

You can disable the second output by deselecting Qutput number of
corrected errors. This removes the block’s second output port.

The sample times of the input and output signals are equal.

E! Block Parameters: Integer-Dutput RS Decod

21|

—Integer-Output RS Decoder [mask)

Attemnpt to decode the input received signal using an [M.K] Reed-Solomon decoder
with the narmow-senze generator polynomial. The input must be a frame-bazed
column vector with an integer multiple of M elements. Each group of M input
elements represents one received word to be decoded. Each symbal must have
ceilllog2(M+1]] bits.

The optional ‘Primitive polynomial' parameter iz a row vector that represents the
binary coefficients of the primitive polpnomial in order of descending powers. ‘When
such a user-defined Primitive polynomial is provided, the number of bitz in each input
zymbol must equal the order of the Primitive polynomial instead.

The optional 'Generator polynomial' parameter iz a row vectar that represents the
coefficients of the generator polynomial in order of descending powers. Each
coefficient is an element of the Galoiz field defined by the: primitive palpnomial.

The number of corected emors can be zent to a second output port by checking the
‘Dutput number of corrected enors' check box. A decoding failure occurs when a
certain word in the input containg more than [M-K)/2 ermors. This is indicated by a
walue of -1 in the coresponding position in the second output vectar,

=) |

Codeword length M:
]
Meszage length K:

|2

[~ Specify primitive polynomial

Frimitive polynomial:
oo
™ Specify generator polynomial

Generator polynomial:

|rsgenpoly[?,3]

V' Output number of comected emars

Ok Lancel Help Apply

2-277

Integer-Output RS Decoder

Algorithm

Pair Block

References

2-278

Codeword length N
The codeword length.

Message length K
The message length.

Specify primitive polynomial
When you select this box, you can specify the primitive polynomial
as a binary row vector.

Primitive polynomial
Binary row vector representing the primitive polynomial in
descending order of powers.

Specify generator polynomial
When you select this box, you can specify the generator polynomial
as an integer row vector.

Generator polynomial
Integer row vector, whose entries are in the range from 0 to 2M-1,
representing the generator polynomial in descending order of
powers.

Output number of corrected errors
When you select this box, the block outputs the number of
corrected errors in each word through a second output port.

This block uses the Berlekamp-Massey decoding algorithm. For
information about this algorithm, see the references listed below.

Integer-Input RS Encoder

[1] Wicker, Stephen B., Error Control Systems for Digital
Communication and Storage, Upper Saddle River, N.J., Prentice Hall,
1995.

[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York,
McGraw-Hill, 1968.

Integer-Output RS Decoder
|

See Also Binary-Output RS Decoder

2-279

Integer to Bit Converter

Purpose
Library

Description

Integer to Bit
Comrerter

Dialog
Box

2-280

Map vector of integers to vector of bits
Utility Blocks

The Integer to Bit Converter block maps each integer in the input
vector to a group of bits in the output vector. If M is the Number of
bits per integer parameter, then the input integers must be between 0
and 2M-1. The block maps each integer to a group of M bits, using the
first bit as the most significant bit. As a result, the output vector length
is M times the input vector length.

The input can be either a scalar or a frame-based column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, single, and double.

JFunction Block Parameters: Integer to Bit Con x|

—Integer to Bit Converter [mask] [link]

Map a vector of integers ta a vector of bitz. The first bit of the output vectar is the most
significant bit [MSE]. The Murmber of bits per integer walue defines how many bits are
mapped from each integer.

The input can be either a scalar or a frame-based column vector,

=

Mumber of bits per integer:

Output data typel Same as input ;I

QK I Cancel | Help | Apply |

Number of bits per integer
The number of bits the block uses to represent each integer of the
input. This parameter must be an integer between 1 and 31.

Output data type
The output data type can be set to int8, uint8, int16, uint16,
int32, uint32, boolean, single, or double. If this field is set to
Same as input, the output data type will be inherited from the
input signal.

Integer to Bit Converter

Examples If the input is [7; 13] and the Number of bits per integer parameter
is 4, then the output is [0; 1; 1; 1; 1; 1; 0; 1]. The first group of four
bits (0, 1, 1, 1) represents 7 and the second group of four bits (1, 1, 0,
1) represents 13. Notice that the output length is four times the input
length.

Pair Block Bit to Integer Converter

2-281

Integrate and Dump

Purpose
Library

Description

2-282

Integrate
and Dump

Integrate discrete-time signal, resetting to zero periodically
Comm Filters

The Integrate and Dump block creates a cumulative sum of the
discrete-time input signal, while resetting the sum to zero according to
a fixed schedule. When the simulation begins, the block discards the
number of samples specified in the Offset parameter. After this initial
period, the block sums the input signal along columns and resets the
sum to zero every N input samples, where N is the Integration period
parameter value. The reset occurs after the block produces its output at
that time step.

This block supports inputs and outputs of type double, single, and
fixed-point. The port data types are inherited from the signals that
drive the block.

The integrate-and-dump operation is often used in a receiver model
when the system’s transmitter uses a simple square-pulse model. It
can also be used in fiber optics and in spread-spectrum communication
systems such as CDMA (code division multiple access) applications.

The input can be either a scalar or a frame-based matrix. If the input is
frame-based, then it must have k*N rows for some positive integer k,
and the block processes each column independently.

The output contents, dimensions, and sample time are affected by the
Output intermediate values check box, as follows:

® If you clear the check box, then the block outputs the cumulative
sum at each reset time.

= If the input is sample-based, then the output sample time is N
times the input sample time and the block experiences a delay
whose duration is one output sample period. In this case, the
output dimensions match the input dimensions.

= If the input is a frame-based (k*N)-by-n matrix, then the output is
k-by-n. In this case, the block experiences no delay and the output
frame period matches the input frame period.

Integrate and Dump

o If you select the check box, then the block outputs the cumulative
sum at each time step, including the reset times. The output has the
same sample time and the same matrix dimensions as the input.

This block will work within a triggered subsystem, as long as it is used
in the single-rate mode.

Transients and Delays

A nonzero value in the Offset parameter causes the block to output one
or more zeros during the initial period while it discards input samples.
If the input is a frame-based matrix with n columns and the Offset
parameter is a length-n vector, then the mth element of the Offset
vector is the offset for the mth column of data. If Offset is a scalar, then
the block applies the same offset to each column of data. The output of
initial zeros due to a nonzero Offset value is a transient effect, not a
persistent delay.

When the Output intermediate values check box is cleared,
the block’s output is delayed, relative to its input, throughout the
simulation:

¢ [f the input is sample-based, then the output is delayed by one
sample after any transient effect is over. That is, after removing
transients from the input and output, you can see the result of the
mth integration period in the output sample indexed by m+1.

o Ifthe input is frame-based and the Offset parameter is nonzero, then
after the transient effect is over, the result of each integration period
appears in the output frame corresponding to the last input sample
of that integration period. This is one frame later than the output
frame corresponding to the first input sample of that integration
period, in cases where an integration period spans two input frames.
For an example of this situation, see “Example of Transient and
Delay” on page 2-285.

2-283

Integrate and Dump

Dialog [Cvtock porameters: ntegrote and Dump——— 21

Box —Integrate and dump [mazk]
Integrate over number of samples in integration period and rezet at the end of
integration.

Frame based K. « L input is treated as L channels each of frame size K.
The zamples are integrated along every column.

Qffset zamples are ignored during the first integration period.

Integration period [number of samples]:
5]
Qffset [number of samples]:
Jo

[~ Output intermediate values

Ok | Lancel | Help Apply

Integration period
The number of input samples between resets.

Offset
A nonnegative integer vector or scalar specifying the number of

input samples to discard from each column of input data at the
beginning of the simulation.

Output intermediate values
Determines whether the block suppresses the intermediate

cumulative sums between successive resets.

Examples If Integration period is 4 and Offset is the scalar 3, then the table
below shows how the block treats the beginning of a ramp (1, 2, 3, 4,...)
in several situations. (The values shown in the table do not reflect
vector sizes but merely indicate numerical values.)

2-284

Integrate and Dump

Output
intermediate
values Check
Box

Input Signal
Properties

First Several Output
Values

Cleared

Sample-based
scalar

0, 0, 4+5+6+7, and
8+9+10+11, where one 0

is an initial transient value
and the other 0 is a delay
value that results from
the cleared check box and
sample-based input.

Cleared

Frame-based
column vector of
length 4

0, 4+5+6+7, and 8+9+10+11,
where 0 is an initial delay
value that results from the
nonzero offset. The output is
a frame-based scalar.

Selected

Sample-based
scalar

0, 0, 0, 4, 4+5, 4+5+6,
4+5+6+7, 8, 8+9, 8+9+10,
8+9+10+11, and 12, where
the three 0s are initial
transient values.

Selected

Frame-based
column vector of
length 4

0, 0, 0, 4, 4+5, 4+5+6,
4+5+6+7, 8, 8+9, 8+9+10,
8+9+10+11, and 12, where
the three Os are initial
transient values. The output
is a frame-based column
vector of length 4.

In all cases, the block discards the first three input samples (1, 2, and 3).

Example of Transient and Delay

The figure below illustrates a situation in which the block exhibits both
a transient effect for three output samples, as well as a one-sample delay
in alternate subsequent output samples for the rest of the simulation.

2-285

Integrate and Dump

See Also

2-286

The figure also indicates how the input and output values are organized
as frame-based column vectors. In each vector in the figure, the

last sample of each integration period is underlined, discarded input
samples are white, and transient zeros in the output are white.

Al

22

23
14 N Integrate 105

—_ = = — —_ = = —
1525 and Dump 80 130
16 26
17 27
B B Integration period = 5
9 0 Offset = 13
0n Output intermediate values cleared Input signal
= Frame-based column vector of length 10

The transient effect lasts for ceil(13/5) output samples because the
block discards 13 input samples and the integration period is 5. The
first output sample after the transient effect is over, 80, corresponds

to the sum 14+15+16+17+18 and appears at the time of the input
sample 18. The next output sample, 105, corresponds to the sum
19+20+21+22+23 and appears at the time of the input sample 23. Notice
that the input sample 23 is one frame later than the input sample 19;
that is, this five-sample integration period spans two input frames. As
a result, the output of 105 is delayed compared to the first input (19)
that contributes to that sum.

Windowed Integrator, Discrete-Time Integrator (Simulink), Ideal
Rectangular Pulse Filter

Interlacer

Purpose

Library

Description

a
Interlacer
E

Dialog
Box

Examples

Pair Block

See Also

Alternately select elements from two input vectors to generate output
vector

Sequence Operations

The Interlacer block accepts two inputs that have the same vector

size, complexity, and sample time. It produces one output vector by
alternating elements from the first input (labeled 0 for odd) and from
the second input (labeled E for even) . As a result, the output vector size
is twice that of either input. The output vector has the same complexity
and sample time of the inputs.

The inputs can be either scalars or frame-based column vectors. The
block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signals.

This block can be useful for combining in-phase and quadrature
information from separate vectors into a single vector.

ElBlock Parameters: Interlacer 2=l

—Interlacer [mask]

Combine the elements of the input signals to generate the output signal. The
elements of the first input signal become the odd-numbered elements of the output
sighal, while the elements of the second input sighal become the even-numbered
elements of the output signal.

The inputs can be either scalars or frame-baged column vectors.

............. g K | Cancel | Help | o |

If the two input vectors are frame-based with values [1; 2; 3; 4] and
[5; 6; 7; 8], then the output vectoris [1; 5; 2; 6; 3; 7; 4; 8].

Deinterlacer

General Block Interleaver; Mux (Simulink)

2-287

1/Q Imbalance

Purpose

Library

Description

[Fi]
Imbalance

2-288

Create complex baseband model of signal impairments caused by
imbalances between in-phase and quadrature receiver components

RF Impairments

The I/Q Imbalance block creates a complex baseband model of the signal
impairments caused by imbalances between in-phase and quadrature
receiver components. Typically, these are caused by differences in the
physical channels for the two components of the signal.

The I/Q Imbalance block applies amplitude and phase imbalances to
the in-phase and quadrature components of the input signal, and then
combines the results into a complex signal. The block

1 Separates the signal into its in-phase and quadrature components.

2 Applies amplitude and phase imbalances, specified by the I/Q
amplitude imbalance (dB) and I/Q phase imbalance (deg)
parameters, respectively, to both components.

3 Combines the in-phase and quadrature components into a complex
signal.

4 Applies an in-phase dc offset, specified by the I dc offset parameter,
and a quadrature offset, specified by the Q dc offset parameter, to
the signal.

The block performs these operations in the subsystem shown in the
following diagram, which you can view by right-clicking the block and
selecting Look under mask:

1/Q Imbalance

Chedk
Input Signal

Amplitude Fhase
Imbalance Imbalance

de
Oiffzet

The value of the I/Q amplitude imbalance (dB) parameter is divided
between the in-phase and quadrature components:

¢ If you enter a positive value X for the I/Q amplitude imbalance
(dB), the block applies a gain of +X/2 dB to the in-phase component
and a gain of -X/2 dB to the quadrature component.

¢ If you enter a negative value X for the I/Q amplitude imbalance
(dB), the block applies a gain of -X/2 dB to the in-phase component
and a gain of +X/2 dB to the quadrature component.

The effects of changing the block’s parameters are illustrated by the
following scatter plots of a signal modulated by 16-ary quadrature
amplitude modulation (QAM) with an average power of 0.01 watts.
The usual 16-ary QAM constellation without distortion is shown in
the first scatter plot:

2-289

1/Q Imbalance

0.2
0.15
D1 * * * *
o
= 005
% * * * *
Z
wm D
=
o
'13 * * * *
3-0.05
D1 * * * *
0.15
0.2
D2 015 01 005 0 00s 01 015 02

In-phase Amplitude
The following figure shows a scatter plot of an output signal, modulated

by 16-ary QAM, from the I/Q block with I/Q amplitude imbalance
(dB) set to 8 and all other parameters set to 0:

2-290

1/Q Imbalance

CQuadrature Amplitude
(o]

4025 02 015 01 005 0 005 01 015 02 025
In-phase Amplitude

Observe that the scatter plot is stretched horizontally and compressed
vertically compared to the undistorted constellation.

If you set IQ phase imbalance (deg) to 30 and all other parameters to
0, the scatter plot is skewed clockwise by 30 degrees, as shown below:

2-291

1/Q Imbalance

0z

0.15

0.1 .

CQuadrature Amplitude
(o]

0.2 015 0.1 -0.05 a 0.05 0.1 015 0z
In-phase Amplitude

Setting the I dc offset to 0.02 and the Q dc offset to 0.04 shifts the
constellation 0.02 to the right and 0.04 up, as shown below:

2-292

1/Q Imbalance

Dialog
Box

0z

= =
o =] —
& = ™

CQuadrature Amplitude
(o]

015

02
0.2 015 0.1 -0.05 0 0.05 0.1 0.15 0z

In-phase Amplitude

See “Scatter Plot Examples” for a description of the model that
generates this plot.

EBlock Parameters: Imbalance 2=l

—1/Q Imbalance [mask]

Complex bazeband model of the signal impairments caused by imbalances between
in-phase and quadrature receiver components.

=) |
F

1/ amplitude imbalance (dB]:
0]
1/0 phase imbalance [deg):
Jo

| dc offset:

Jo

0 dc offset:

Jo

Qg Lancel Help Apply

2-293

1/Q Imbalance

See Also

2-294

I/Q amplitude imbalance (dB)
Scalar specifying the I/Q amplitude imbalance in decibels.

I/Q phase imbalance (deg)
Scalar specifying the I/Q phase imbalance in degrees.

I dc offset
Scalar specifying the in-phase dc offset.

Q dc offset
Scalar specifying the amplitude dc offset.

Memoryless Nonlinearity

Kasami Sequence Generator

Purpose
Library

Description

Kazami
Sequence
Fenerator

Generate Kasami sequence from set of Kasami sequences
Sequence Generators sublibrary of Comm Sources

The Kasami Sequence Generator block generates a sequence from the
set of Kasami sequences. The Kasami sequences are a set of sequences
that have good cross-correlation properties.

There are two classes of Kasami sequences: the small set and the large
set. The large set contains all the sequences in the small set. Only the
small set is optimal in the sense of matching Welch’s lower bound for
correlation functions.

Kasami sequences have period N = 2" - 1, where n is a nonnegative,
even integer. Let u be a binary sequence of length N, and let w be the
sequence obtained by decimating u by 2%2 +1. The small set of Kasami
sequences is defined by the following formulas, in which 7" denotes

the left shift operator, m is the shift parameter for w, and D denotes
addition modulo 2.

K.) u m=-1
u,n,m)=
s u®T"w m=0,.,2""2_9

Small Set of Kasami Sequences for n Even
Note that the small set contains 2% sequences.

For mod(n, 4) = 2, the large set of Kasami sequences is defined as
follows. Let v be the sequence formed by decimating the sequence u by
272+14 1. The large set is defined by the following table, in which % and
m are the shift parameters for the sequences v and w, respectively.

2-295

Kasami Sequence Generator

(1 k=-2,m=-1
k=-1,m=-1
u® Tk £=0,.,2" -2 m=-1
Kp@,n,km)= u®Tw k=-2 m=0,.2"2%2 _9
v®TMw k=-1,m=0,..,2"2_2
_u@Tkv(JBme £=0,.,2" -2 m=0,.2"2_2

Large Set of Kasami Sequences for mod(n, 4) = 2

The sequences described in the first three rows of the preceding figure
correspond to the Gold sequences for mod(n, 4) = 2. See the reference
page for the Gold Sequence Generator block for a description of Gold
sequences. However, the Kasami sequences form a larger set than the
Gold sequences.

The correlation functions for the sequences takes on the values
{-t(n), -s(n), -1, s(n) -2 , t(n) - 2}
where

tn) =1+2M*27/2 4 even

s(n) = =(t(n)+1)

1
2
Block Parameters

The Generator polynomial parameter specifies the generator
polynomial, which determines the connections in the shift register that

generates the sequence u. You can specify the Generator polynomial
parameter using either of these formats:

® A vector that lists the coefficients of the polynomial in descending
order of powers. The first and last entries must be 1. Note that the
length of this vector is one more than the degree of the generator
polynomial.

2-296

Kasami Sequence Generator

® A vector containing the exponents of z for the nonzero terms of the

polynomial in descending order of powers. The last entry must be 0.

For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent the same
polynomial, p(z) = z8+z2+1.

The Initial states parameter specifies the initial states of the shift
register that generates the sequence u. Initial States is a binary
scalar or row vector of length equal to the degree of the Generator
polynomial. If you choose a binary scalar, the block expands the
scalar to a row vector of length equal to the degree of the Generator
polynomial, all of whose entries equal the scalar.

The Sequence index parameter specifies the shifts of the sequences
v and w used to generate the output sequence. You can specify the
parameter in either of two ways:

® To generate sequences from the small set, for n is even, you can
specify the Sequence index as an integer m. The range of m is
[-1, ..., 22 - 2]. The following table describes the output sequences
corresponding to Sequence index m:

Sequence
Index Range of Indices Output Sequence
-1 m=-1 u
m m=0,.. ,2%2_2
u®Tw

¢ To generate sequences from the large set, for mod (n, 4) = 2, where
n is the degree of the Generator polynomial, you can specify

Sequence index as an integer vector [k m]. In this case, the output
sequence is from the large set. The range for % is [-2, ..., 2" - 2], and

the range for m is [-1, ..., 22 - 2]. The following table describes the
output sequences corresponding to Sequence index [k m]:

2-297

Kasami Sequence Generator

2-298

Sequence Index
[k m] Range of Indices Output Sequence
[-2 -1] k=2 m=-1 u
[-1 -1] k=-1,m=-1 v
[k -1] k=0,1,..,2"-2
u® T
m =-1
[-2 m] k=-2
u®T"w
m=0,1,..2"2-2
[-1 m] k=-1
v®TMw
m=0,..,2Y2-2
[k m] kE=0,..,2"-2 .
u@Tv@®TMw
m=0,..,2"2.92

You can shift the starting point of the Gold sequence with the Shift
parameter, which is an integer representing the length of the shift.

You can use an external signal to reset the values of the internal

shift register to the initial state by selecting the Reset on nonzero
input check box. This creates an input port for the external signal in
the Kasami Sequence Generator block. The way the block resets the
internal shift register depends on whether its output signal and the
reset signal are sample-based or frame-based. See “Example: Resetting
a Signal” on page 2-456 for an example.

Polynomials for Generating Kasami Sequences

The following table lists some of the polynomials that you can use to
generate the Kasami set of sequences.

Kasami Sequence Generator

Dialog
Box

N Polynomial

Set

15 410]

Small

610]

Large

n
4
6 63
8

Small

10 1023 10 3 0]

Large

12 4095

[
[
255 [84320]
[
[

12641 0]

Small

E! Source Block Parameters: Kasami Sequence Gene ll

—F.azami Sequence Generator [mask)] [link]

Generate a Kasami sequence from the set of Kazami sequences by specifying the
generator polynomial

The generator polynomial parameter value reprezents the shift register connections.
Enter these values az either a binary vector or a descending ordered polynomial to
indicate the connection points.

The initial states parameter iz a binary vector that represents the starting state of the
zhift register.

The sequence index parameter denotes the single sequence outputted from the set
of K.azami sequences. Specify it as a 2-element integer vector for the Large set of
zequences of ag a scalar integer for the Small set of sequences.

The shift parameter iz a scalar integer that produces an offzet in the sequence.

Generator polynomial:

[1000011]
Initial states:
Jooooo1
Sequence index(es]):
Jo

Shift:

Jo

Sample time:

Ji

[~ Frame-based cutputs
Samples per frame:

|1
[~ Reset on nonzera input

Output data type: | double LI

0K I Cancel | Help |

2-299

Kasami Sequence Generator

See Also

2-300

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Generator polynomial
Binary vector specifying the generator polynomial for the
sequence u.

Initial states
Binary scalar or row vector of length equal to the degree of the
Generator polynomial, which specifies the initial states of the
shift register that generates the sequence u.

Sequence index
Integer or vector specifying the shifts of the sequences v and w
used to generate the output sequence.

Shift
Integer scalar that determines the offset of the Kasami sequence
from the initial time.

Sample time
Period of each element of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field
is active only if you select the Frame-based outputs check box.

Reset on nonzero input
When selected, you can specify an input signal that resets the
internal shift registers to the original values of the Initial states.

Output data type
The output type of the block can be specified as a boolean or
double. By default, the block sets this to double.

Gold Sequence Generator, PN Sequence Generator

Kasami Sequence Generator

Reference [1] Peterson and Weldon, Error Correcting Codes, 2nd Ed., MIT Press,
Cambridge, MA, 1972.

[2] Proakis, John G., Digital Communications, Third edition, New York,
McGraw Hill, 1995.

[3] Sarwate, D. V. and Pursley, M.B., "Crosscorrelation Properties of
Pseudorandom and Related Sequences," Proc. IEEE, Vol. 68, No. 5,
May 1980, pp. 583-619.

2-301

Linearized Baseband PLL

Purpose
Library

Description

Linearized Filt
Baseband FL

FLL o

2-302

Implement linearized version of baseband phase-locked loop

Components sublibrary of Synchronization

The Linearized Baseband PLL block is a feedback control system that
automatically adjusts the phase of a locally generated signal to match
the phase of an input signal. Unlike the Phase-Locked Loop block, this
block uses a baseband model method. Unlike the Baseband PLL block,
which uses a nonlinear model, this block simplifies the computations
by using x to approximate sin(x). The baseband PLL model depends on
the amplitude of the incoming signal but does not depend on a carrier
frequency.

This PLL has these three components:

An integrator used as a phase detector.

A filter. You specify the filter’s transfer function using the Lowpass
filter numerator and Lowpass filter denominator parameters.
Each is a vector that gives the respective polynomial’s coefficients in
order of descending powers of s.

To design a filter, you can use functions such as butter, cheby1,
and cheby?2 in the Signal Processing Toolbox. The default filter is
a Chebyshev type II filter whose transfer function arises from the
command below.

[num, den] = cheby2(3,40,100,'s")

A voltage-controlled oscillator (VCO). You specify the sensitivity

of the VCO signal to its input using the VCO input sensitivity
parameter. This parameter, measured in Hertz per volt, is a scale
factor that determines how much the VCO shifts from its quiescent
frequency.

The input signal represents the received signal. The input must be a
sample-based scalar signal. The three output ports produce:

The output of the filter

Linearized Baseband PLL

Dialog
Box

See Also

References

® The output of the phase detector
® The output of the VCO

[Z1Block Parameters: Linearized Baseband PLL 21l
r—Linearized Baseband PLL [mask]

Implement a linearized baseband model of a phaze-locked loop. The three outputs
are the outputs of the lowpass filker, the phase detector, and the voltage controlled
oscillator [VCO). The input must be a sample-based scalar signal.

=
F

Lowpazs filker numeratar:

3.0002 0 40002

Lowpass filker denominator:
I[‘I E7.46 2270.9 40002]

WO input sensitivity [Hz)

Jh

Ok | Lancel | Help Apply

Lowpass filter numerator
The numerator of the lowpass filter’s transfer function,
represented as a vector that lists the coefficients in order of
descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter’s transfer function,
represented as a vector that lists the coefficients in order of
descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the
shift from the VCO’s quiescent frequency.

Baseband PLL, Phase-Locked Loop

For more information about phase-locked loops, see the works
listed in“Selected Bibliography for Synchronization” in Using the
Communications Blockset.

2-303

LMS Decision Feedback Equalizer

Purpose

Library

Description

2-304

Inpust
Desired

ode

Bqualized
Er

ks

Equalize using decision feedback equalizer that updates weights with
LMS algorithm

Equalizers

The LMS Decision Feedback Equalizer block uses a decision feedback
equalizer and the LMS algorithm to equalize a linearly modulated
baseband signal through a dispersive channel. During the simulation,
the block uses the LMS algorithm to update the weights, once per
symbol. If the Number of samples per symbol parameter is 1, then
the block implements a symbol-spaced equalizer; otherwise, the block
implements a fractionally spaced equalizer.

Input and Output Signals

The port labeled Input receives the signal you want to equalize, as

a scalar or a frame-based column vector. The port labeled Desired
receives a training sequence whose length is less than or equal to the
number of symbols in the Input signal. Valid training symbols are
those listed in the Signal constellation vector.

This block accepts only frame-based signals. If the value of Reference
tap is equal to or greater than the frame size, the block will not work

properly.
The port labeled Equalized outputs the result of the equalization
process.

You can configure the block to have one or more of these extra ports:

® Mode input, as described in “Controlling the Use of Training or
Decision-Directed Mode” in Using the Communications Blockset.

® Err output for the error signal, which is the difference between the
Equalized output and the reference signal. The reference signal
consists of training symbols in training mode, and detected symbols
otherwise.

® Weights output, as described in “Retrieving the Weights and Error
Signal” in Using the Communications Blockset.

LMS Decision Feedback Equalizer

Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training
or decision-directed mode, see “Using Adaptive Equalizers” in Using the
Communications Blockset.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter
so that it exceeds the delay, in symbols, between the transmitter’s
modulator output and the equalizer input. When this condition is
satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is
to set the reference tap to the center tap of the forward filter.

2-305

LMS Decision Feedback Equalizer

L]
DIG IOg [Z]Block Parameters: LMS Decision Feedback Equa 2=l

Box —LMS decision feedback equalizer [mazk]

Equalize a linearly modulated signal through a dispersive channel using a decision
feedback equalizer and the LIS algorithim.

The block computes filker weights with the LS algarithm and filters the input signal.
The filter weights are updated once for each symbal.

The Deszired input iz uged for training the equalizer. It expects complex constellation
points.

The Leakage factor must be in the range 0to 1. A value of 1 cormesponds to a
conventional weight update algorithm, and a walue of 0 coresponds to a memaryless
update algarithim.

If the Mode input port box is checked, the mode input toggles between training and
decision directed mode. For braining, the mode input must be 1, and for decision
directed, the mode must be 0. For every frame in which the made input is 1 or nat
present, the equalizer trains at the beginning of the frame for the length of the desired
zignal.

=) |
F

Mumber of forward taps:
Mumber of feedback taps:

3

Mumber of samples per symbal:
Jh

Signal constellation:
Iqammod[[D:3],4]

Fieference tap:

I

Step size:

Joo

Leakage:

Jh

Initial weights:

Jo

v Mode input port
V' Dutput error
V' Output weights

Ok I Lancel | Help Apply

Number of forward taps
The number of taps in the forward filter of the decision feedback
equalizer.

2-306

LMS Decision Feedback Equalizer

Number of feedback taps
The number of taps in the feedback filter of the decision feedback
equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for
the modulation.

Reference tap
A positive integer less than or equal to the number of forward
taps in the equalizer.

Step size
The step size of the LMS algorithm.

Leakage factor
The leakage factor of the LMS algorithm, a number between 0
and 1. A value of 1 corresponds to a conventional weight update
algorithm, and a value of 0 corresponds to a memoryless update
algorithm.

Initial weights
A vector that concatenates the initial weights for the forward and
feedback taps.

Mode input port
If you check this box, the block has an input port that enables you
to toggle between training and decision-directed mode.

Output error
If you check this box, the block outputs the error signal, which is
the difference between the equalized signal and the reference
signal.

Output weights
If you check this box, the block outputs the current forward and
feedback weights, concatenated into one vector.

2-307

LMS Decision Feedback Equalizer

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle
River, N.J., Prentice-Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New
York, Wiley, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York,
McGraw-Hill, 2001.

See Also LMS Linear Equalizer, Normalized LMS Decision Feedback Equalizer,
Sign LMS Decision Feedback Equalizer, Variable Step LMS Decision
Feedback Equalizer, RLS Decision Feedback Equalizer, CMA Equalizer

2-308

LMS Linear Equalizer

Purpose

Library

Description

Inpust

Desired

ode

Bqualized
Er

ks

Equalize using linear equalizer that updates weights with LMS
algorithm

Equalizers

The LMS Linear Equalizer block uses a linear equalizer and the LMS
algorithm to equalize a linearly modulated baseband signal through a
dispersive channel. During the simulation, the block uses the LMS
algorithm to update the weights, once per symbol. If the Number of
samples per symbol parameter is 1, then the block implements a
symbol-spaced equalizer; otherwise, the block implements a fractionally
spaced equalizer.

Input and Output Signals

The port labeled Input receives the signal you want to equalize, as

a scalar or a frame-based column vector. The port labeled Desired
receives a training sequence whose length is less than or equal to the
number of symbols in the Input signal. Valid training symbols are
those listed in the Signal constellation vector.

This block accepts only frame-based signals. If the value of Reference
tap is equal to or greater than the frame size, the block will not work

properly.

The port labeled Equalized outputs the result of the equalization
process.

You can configure the block to have one or more of these extra ports:

® Mode input, as described in“Controlling the Use of Training or
Decision-Directed Mode” in Using the Communications Blockset.

® Err output for the error signal, which is the difference between the
Equalized output and the reference signal. The reference signal
consists of training symbols in training mode, and detected symbols
otherwise.

® Weights output, as described in “Retrieving the Weights and Error
Signal” in Using the Communications Blockset.

2-309

LMS Linear Equalizer

2-310

Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training
or decision-directed mode, see “Using Adaptive Equalizers” in Using the
Communications Blockset.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter
so that it exceeds the delay, in symbols, between the transmitter’s
modulator output and the equalizer input. When this condition is
satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is
to set the reference tap to the center tap.

LMS Linear Equalizer

L]
DIG IOg E! Block Parameters: LMS Linear Equalizer 2=l
Box —LMS Linear Equalizer [mask)]

Equalize a linearly modulated signal through a dispersive channel using the LMS
algorithm.

The block computes filker weights with the LS algarithm and filters the input signal.
‘wihen the number of samples per symbal is 1. the filter weights are updated once for
each symbol, for a symbol spaced (i.e. T-spaced] equalizer. *#hen the number of
zamples per symbal is greater than one, the weights are updated once every Nth
zample, for a T/M-spaced equalizer.

The Deszired input iz uged for training the equalizer. It expects complex constellation
points.

The Leakage factor must be in the range 0to 1. A value of 1 cormesponds to a
conventional weight update algorithm, and a walue of 0 coresponds to a memaryless
update algarithim.

If the Mode input port box is checked, the mode input toggles between training and
decision directed mode. For braining, the mode input must be 1, and for decision
directed, the mode must be 0. For every frame in which the made input is 1 or nat
present, the equalizer trains at the beginning of the frame for the length of the desired
zignal.

Mumber of taps:
[
Mumber of samples per symbal:
Jh

Signal constellation:
Jaammad([0:15],16]
Fieference tap:

|2

Step size:

Joo

Leakage:

Jh

Initial weights:

Jo

v Mode input port

V' Dutput error

V' Output weights

Ok I Lancel Help Apply

Number of taps
The number of taps in the filter of the linear equalizer.

Number of samples per symbol
The number of input samples for each symbol.

2-311

LMS Linear Equalizer

Examples

References

2-312

Signal constellation
A vector of complex numbers that specifies the constellation for
the modulated signal, as determined by the modulator in your
model

Reference tap
A positive integer less than or equal to the number of taps in the
equalizer.

Step size
The step size of the LMS algorithm.

Leakage factor
The leakage factor of the LMS algorithm, a number between 0
and 1. A value of 1 corresponds to a conventional weight update
algorithm, and a value of 0 corresponds to a memoryless update
algorithm.

Initial weights
A vector that lists the initial weights for the taps.

Mode input port
If you check this box, the block has an input port that enables you
to toggle between training and decision-directed mode.

Output error
If you check this box, the block outputs the error signal, which is
the difference between the equalized signal and the reference
signal.

Output weights
If you check this box, the block outputs the current weights.

See “Example: LMS Linear Equalizer” and the Adaptive Equalization
demo.

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.

LMS Linear Equalizer

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle
River, N.J., Prentice-Hall, 1996.

[38] Rurzweil, Jack, An Introduction to Digital Communications, New
York, Wiley, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York,
McGraw-Hill, 2001.

See Also LMS Decision Feedback Equalizer, Normalized LMS Linear Equalizer,
Sign LMS Linear Equalizer, Variable Step LMS Linear Equalizer, RLS
Linear Equalizer, CMA Equalizer

2-313

Matrix Deinterleaver

Purpose

Library

Description

Tl atriz
Deinterleaver

Dialog
Box

2-314

Permute input symbols by filling matrix by columns and emptying it
by rows

Block sublibrary of Interleaving

The Matrix Deinterleaver block performs block deinterleaving by filling
a matrix with the input symbols column by column and then sending
the matrix contents to the output port row by row. The Number of
rows and Number of columns parameters are the dimensions of the
matrix that the block uses internally for its computations.

The length of the input vector must be Number of rows times
Number of columns. If the input is frame-based, then it must be a
column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

ElBlock Parameters: Matrix Deinterleaver i 2=l

— M atrix Deinterl [mazk]

Deinterleave the input vector by writing the elements into a matrix column-by-colurn
and reading them out row-by-row. The product of Mumber of rows and Mumber of
columns muszt match the input signal width,

=
F

Mumber of rows:
B
Mumber of columns:
J4

Ok Lancel Help Apply

Number of rows
The number of rows in the matrix that the block uses for its
computations.

Matrix Deinterleaver

Examples

Pair Block

See Also

Number of columns
The number of columns in the matrix that the block uses for its
computations.

If the Number of rows and Number of columns parameters are 2
and 3, respectively, then the deinterleaver uses a 2-by-3 matrix for its
internal computations. Given an input signal of [1; 2; 3; 4; 5; 6],
the block produces an output of [1; 3; 5; 2; 4; 6].

Matrix Interleaver

General Block Deinterleaver

2-315

Matrix Helical Scan Deinterleaver

Purpose

Library

Description

2-316

I atrix
Helical Scan
Deinterleaver

Restore ordering of input symbols by filling matrix along diagonals
Block sublibrary of Interleaving

The Matrix Helical Scan Deinterleaver block performs block
deinterleaving by filling a matrix with the input symbols in a helical
fashion and then sending the matrix contents to the output port row
by row. The Number of rows and Number of columns parameters
are the dimensions of the matrix that the block uses internally for its
computations.

Helical fashion means that the block places input symbols along
diagonals of the matrix. The number of elements in each diagonal
matches the Number of columns parameter, after the block wraps
past the edges of the matrix when necessary. The block traverses
diagonals so that the row index and column index both increase. Each
diagonal after the first one begins one row below the first element of
the previous diagonal.

The Array step size parameter is the slope of each diagonal, that is,
the amount by which the row index increases as the column index
increases by one. This parameter must be an integer between zero and
the Number of rows parameter. If the Array step size parameter is
zero, then the block does not deinterleave and the output is the same
as the input.

The number of elements of the input vector must be the product
of Number of rows and Number of columns. If the input is
frame-based, then it must be a column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

Matrix Helical Scan Deinterleaver

Dialog [Cvtock porameters: atri Helcalscan Deinerles 21
Box —bdatrix helical sc:an. deinterl [mazk] . . .
Fiestore the ordering of spmbols permuted by a matching helical scan interleaver. The
helical scan interleaver wiites input elements row-by-row into an array with a specified
number of rows and columng. The interleaver output iz then read by scanning along
diagonals of thiz array. The pitch of the diagonal scang iz determined by the array
step size.
The array step size must be a nonnegative integer less than the specified number of
rows. An armay step size of zero indicates no interleaving.
The product of Mumber of rows and Mumber of columns must match the input gsignal
width.
Mumber of rows:
Ed
Mumber of columns:
Je4
Array step size:
Jh
Ok Lancel Help Apply
Number of rows
The number of rows in the matrix that the block uses for its
computations.
Number of columns
The number of columns in the matrix that the block uses for its
computations.
Array step size
The slope of the diagonals that the block writes.
. . .
Pair Block Matrix Helical Scan Interleaver
See Also General Block Deinterleaver

2-317

Matrix Helical Scan Interleaver

Purpose

Library

Description

2-318

I atrix
Helical Scan
Interleawer

Permute input symbols by selecting matrix elements along diagonals
Block sublibrary of Interleaving

The Matrix Helical Scan Interleaver block performs block interleaving
by filling a matrix with the input symbols row by row and then sending
the matrix contents to the output port in a helical fashion. The Number
of rows and Number of columns parameters are the dimensions of
the matrix that the block uses internally for its computations.

Helical fashion means that the block selects output symbols by selecting
elements along diagonals of the matrix. The number of elements in each
diagonal matches the Number of columns parameter, after the block
wraps past the edges of the matrix when necessary. The block traverses
diagonals so that the row index and column index both increase. Each
diagonal after the first one begins one row below the first element of
the previous diagonal.

The Array step size parameter is the slope of each diagonal, that is,
the amount by which the row index increases as the column index
increases by one. This parameter must be an integer between zero and
the Number of rows parameter. If the Array step size parameter is
zero, then the block does not interleave and the output is the same

as the input.

The number of elements of the input vector must be the product
of Number of rows and Number of columns. If the input is
frame-based, then it must be a column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

Matrix Helical Scan Interleaver

Dialog
Box

Examples

EBlock Parameters: Matrix Helical Scan Interleavf; 2=l

—Matrix helical scan interl [mazk]

Interleave input vector by wiiting elements row-by-row inta an array with a specified
number of rows and columns and then reading them out by scanning along diagonals
of thiz array. The pitch of the diagonal scang iz determined by the aray step size.

The array step size must be a nonnegative integer less than the specified number of
rows. An aray step zize of zero indicates no interleaving.

The product of Mumber of rows and Mumber of columng must match the input gsignal
width.

=

Mumber of rows:
Mumber of columns:
Je4

Array step size:

Jh

Ok Lancel Help Apply

Number of rows
The number of rows in the matrix that the block uses for its
computations.

Number of columns
The number of columns in the matrix that the block uses for its
computations.

Array step size
The slope of the diagonals that the block reads.

If the Number of rows and Number of columns parameters are 6
and 4, respectively, then the interleaver uses a 6-by-4 matrix for its
internal computations. If the Array step size parameter is 1, then the
diagonals are as shown in the figure below. Positions with the same
color form part of the same diagonal, and diagonals with darker colors
precede those with lighter colors in the output signal.

Given an input signal of [1:24] ', the block produces an output of

2-319

Matrix Helical Scan Interleaver

1 2 3 4
56 7 8 L6
5 10,
9 10 11 12
—I[1:4]"—> il
13 14 15 16 13, 18,
17, 12,
17 18 19 20 n 1
2122 23 24
[1; 6; 11; 16; 5; 10; 15; 20; 9;
4; 17; 22; 3; 8; 21; 12]
Pair Block Matrix Helical Scan Deinterleaver
See Also General Block Interleaver

2-320

Block's Internal Array

14;

19; 24; 13; 18; 23;...

Matrix Interleaver

Purpose

Library

Description

Tl atriz
Interleawer

Dialog
Box

Permute input symbols by filling matrix by rows and emptying it by
columns

Block sublibrary of Interleaving

The Matrix Interleaver block performs block interleaving by filling a
matrix with the input symbols row by row and then sending the matrix
contents to the output port column by column.

The Number of rows and Number of columns parameters are
the dimensions of the matrix that the block uses internally for its
computations.

The number of elements of the input vector must be the product
of Number of rows and Number of columns. If the input is
frame-based, then it must be a column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

=] Block Parameters: Matrix Interleaver 21l

—bdatrix Interl [mazk]

Interleave the input vectar by writing the elements into & matrix row-by-row and
reading them out column-by-column. The product of Mumber of rows and Mumber of
columns muszt match the input signal width,

=
F

Mumber of rows:
B
Mumber of columns:
J4

Ok Lancel Help Apply

Number of rows
The number of rows in the matrix that the block uses for its
computations.

2-321

Matrix Interleaver

Examples

Pair Block

See Also

2-322

Number of columns
The number of columns in the matrix that the block uses for its
computations.

If the Number of rows and Number of columns parameters are 2
and 3, respectively, then the interleaver uses a 2-by-3 matrix for its
internal computations. Given an input signal of [1; 2; 3; 4; 5; 6],
the block produces an output of [1; 4; 2; 5; 3; 6].

Matrix Deinterleaver

General Block Interleaver

M-DPSK Demodulator Baseband

Purpose
Library

Description

AN

h-DP S

Demodulate DPSK-modulated data
PM, in Digital Baseband sublibrary of Modulation

The M-DPSK Demodulator Baseband block demodulates a signal that
was modulated using the M-ary differential phase shift keying method.
The input is a baseband representation of the modulated signal. The
input and output for this block are discrete-time signals. The input can
be either a scalar or a frame-based column vector. The block accepts the
input data types single and double.

The M-ary number parameter, M, is the number of possible output
symbols that can immediately follow a given output symbol. The block
compares the current symbol to the previous symbol. The block’s first
output is the initial condition of zero (or a group of zeros, if the Output
type parameter is set to Bit) because there is no previous symbol.

Binary or Integer Outputs

If the Output type parameter is set to Integer, then the block
demodulates a phase difference of

6 + 2nk/M

to k, where 6 is the Phase rotation parameter and k is an integer
between 0 and M-1.

If the Output type parameter is set to Bit and the M-ary number
parameter has the form 2K for some positive integer K, then the block
outputs binary representations of integers between 0 and M-1. It
outputs a group of K bits, called a binary word, for each symbol.

In binary output mode, the Constellation ordering parameter
indicates how the block maps an integer to a corresponding group of
K output bits. See the reference pages for theM-DPSK Modulator
Baseband andM-PSK Modulator Baseband blocks for details.

2-323

M-DPSK Demodulator Baseband

2-324

Dialog
Box

JFunction Block Parameters: M-DPSK Demodulal x|

—-DPSE Demodulator Baseband [mask)] [link]

Demodulate the input signal using the differential phase shift keying method.

For zample-based input, the input must be a scalar. For frame-bazed input, the input
must be a column vectar.

The output can be either bitz or integers. |n case of bit output, the output width iz an
integer multiple of the number of bits per symbal.

The symbols can be either binary-demapped or Gray-demapped.

=
F

-y number:
]

Output type: | Integer LI

Constellation ordering: I Binary LI

Fhase ratation [rad):
pisg

Output data type: | double LI

Ok I Lancel Help | Lpply |

M-ary number

The number of possible modulated symbols that can immediately
follow a given symbol.

Output type

Determines whether the output consists of integers or groups
of bits.

Constellation ordering
Determines how the block maps each integer to a group of output
bits.

Phase rotation (rad)
The phase difference between the previous and current modulated
symbols when the input is zero.

Output data type
For integer outputs, this block can output the data types int8,
uint8, int16, uint16, int32, uint32, single, and double. For
bit outputs, output can be int8, uint8, int16, uint16, int32,
uint32, boolean, single, or double.

M-DPSK Demodulator Baseband
|

Pair Block M-DPSK Modulator Baseband

See Also DBPSK Demodulator Baseband, DQPSK Demodulator Baseband,
M-PSK Demodulator Baseband

References [1] Pawula, R. F., "On M-ary DPSK Transmission Over Terrestrial
and Satellite Channels," IEEE Transactions on Communications, Vol.
COM-32, July 1984, 752-761.

2-325

M-DPSK Modulator Baseband

Purpose

Library

Description

2-326

L e

h-DP S

Modulate using M-ary differential phase shift keying method
PM, in Digital Baseband sublibrary of Modulation

The M-DPSK Modulator Baseband block modulates using the M-ary
differential phase shift keying method. The output is a baseband
representation of the modulated signal. The M-ary number parameter,
M, is the number of possible output symbols that can immediately
follow a given output symbol.

The input must be a discrete-time signal. For integer inputs, the block
can accept the data types int8, uint8, int16, uint16, int32, uint32,
single, and double. For bit inputs, the block can accept int8, uint8,
int16, uint16, int32, uint32, boolean, single, and double.

Inputs and Constellation Types

If the Input type parameter is set to Integer, then valid input values
are integers between 0 and M-1. In this case, the input can be either
a scalar or a frame-based column vector. If the first input is k,, then
the modulated symbol is

exp[j9+j27ck—1J
m

where 6 is the Phase rotation parameter. If a successive input is k,
then the modulated symbol is

exp(Jjo+ j2n£) (previous modulated symbol)
m

If the Input type parameter is set to Bit and the M-ary number
parameter has the form 2K for some positive integer K, then the block
accepts binary representations of integers between 0 and M-1. It
modulates each group of K bits, called a binary word. The input can be
either a vector of length K or a frame-based column vector whose length
is an integer multiple of K.

M-DPSK Modulator Baseband

In binary input mode, the Constellation ordering parameter
indicates how the block maps a group of K input bits to a corresponding
phase difference. The Binary option uses a natural binary-to-integer
mapping, while the Gray option uses a Gray-coded assignment of phase
differences. For example, the table below indicates the assignment

of phase difference to three-bit inputs, for both the Binary and Gray
options. 0 is the Phase rotation parameter. The phase difference is
between the previous symbol and the current symbol.

Binary-Coded Gray-Coded Phase
Current Input Phase Difference Difference
[0 0 0] i0 i6
[00 1] 30 + jn/d 30 + jn/d
[0 1 0] i0 + jn2/4 30 + jn3/4
[011] 30 + jn3/4 0 + jn2/4
[10 0] i0 + jnd/d 30 + jn7/4
[10 1] i + jn5/4 i + jn6/4
[110] 30 + jn6/4 30 + jna/4
[111] 30 + jn7/4 30 + jnb/4

For more details about the Binary and Gray options, see the reference
page for theM-PSK Modulator Baseband block. The signal constellation
for that block corresponds to the arrangement of phase differences for
this block.

2-327

M-DPSK Modulator Baseband

L]
DIO IOg E! Function Block Parameters: M-DPSK Modulator x|
Box —-DPSE Modulator Bazeband [mazk] [link]

Modulate the input zsignal ugsing the differential phaze shift keying method.

The input can be either bits or integers. In caze of sample-based bit input, the input
width must equal the number of bits per symbol. In case of frame-bazed bit input, the
input width must be an integer multiple of the number of bits per symbal.

For zample-based integer input, the input must be a scalar. For frame-based integer
input, the input must be a column vector.

The input can be either binary-mapped or Gray-mapped into spmbols.

=
F

-y number:
]

Input type: I Integer LI

Constellation ordering: | Binary LI

Fhase ratation [rad):
pisg

Output data type: | double LI

Ok I Lancel Help | Lpply |

M-ary number
The number of possible output symbols that can immediately
follow a given output symbol.

Input type
Indicates whether the input consists of integers or groups of
bits. If this parameter is set to Bit, then the M-ary number
parameter must be 2X for some positive integer K.

Constellation ordering
Determines how the block maps each group of input bits to a
corresponding integer.

Phase rotation (rad)
The phase difference between the previous and current modulated
symbols when the input is zero.

Output data type
The output data type can be either single or double. By default,
the block sets this to double.

2-328

M-DPSK Modulator Baseband
|

Pair Block M-DPSK Demodulator Baseband

See Also DBPSK Modulator Baseband, DQPSK Modulator Baseband, M-PSK
Modulator Baseband

References [1] Pawula, R. F., "On M-ary DPSK Transmission Over Terrestrial
and Satellite Channels," IEEE Transactions on Communications, Vol.
COM-32, July 1984, 752-761.

2-329

Memoryless Nonlinearity

Purpose Apply memoryless nonlinearity to complex baseband signal
Librclry RF Impairments
Description The Memoryless Nonlinearity block applies a memoryless nonlinearity

to a complex, baseband signal. You can use the block to model radio
frequency (RF) impairments to a signal at the receiver.

Cubic
Folynomial

The Memoryless Nonlinearity block provides five different methods for
modeling the nonlinearity, which you specify by the Method parameter.
The options for the Method parameter are

® Cubic polynomial

® Hyperbolic tangent

® Saleh model

® Ghorbani model

® Rapp model

The five methods are implemented by subsystems underneath the

block’s mask. Each subsystem has the same basic structure, as shown
in the figure below.

o u] | AhdsEA
o
In

AP b

|-l=
s
Ot

Nonlinearity Subsytem

All five subsystems apply a nonlinearity to the input signal as follows:

1 Multiply the signal by a gain factor.

2-330

Memoryless Nonlinearity

2 Split the complex signal into its its magnitude and angle components.

3 Apply an AM/AM conversion to the magnitude of the signal,
according to the selected Method, to produce the magnitude of the
output signal.

4 Apply an AM/PM conversion to the phase of the signal, according to
the selected Method, and adds the result to the angle of the signal to
produce the angle of the output signal.

5 Combine the new magnitude and angle components into a complex
signal and multiply the result by a gain factor, which is controlled
by the Linear gain parameter.

However, the subsystems implement the AM/AM and AM/PM
conversions differently, according to the Method you specify.

If you want to see exactly how the Memoryless Nonlinearity block
implements the conversions for a specific method, you can view the
AM/AM and AM/PM subsystems that implement these conversions
as follows:

1 Right-click on the Memoryless Nonlinearity block and select Look
under mask. This displays the block’s configuration underneath
the mask. The block contains five subsystems corresponding to the
five nonlinearity methods.

2 Double-click the subsystem for the method you are interested in. This
displays the subsystem shown in the preceding figure, Nonlinearity
Subsytem on page 2-330.

3 Double-click on one of the subsystems labeled AM/AM or AM/PM to
view how the block implements the conversions.

AM/PM Characteristics of the Cubic Polynomial and Hyperbolic
Tangent Methods

The following illustration shows the AM/PM behavior for the Cubic
polynomial and Hyperbolic tangent methods:

2-331

Memoryless Nonlinearity

T T
Max
shift
)
(0]
A
&=
=
(%]
©
(2]
o}
=
[a W
0 .
]]

Lower limit Upper limit

Input power level (dBm)
The AM/PM conversion scales linearly with input power value between
the lower and upper limits of the input power level (specified by Lower
input power limit for AM/PM conversion (dBm) and Upper input
power limit for AM/PM conversion (dBm)). Beyond these values,
AM/PM conversion is constant at the values corresponding to

the lower and upper input power limits, which are zero and
(AM/PM conversion) - (upper input power limit — lower input power limit)

respectively.
AM/AM and AM/PM Characteristics of the Saleh Method
The following figure shows, for the Saleh method, plots of

® Qutput voltage against input voltage for the AM/AM conversion
¢ Qutput phase against input voltage for the AM/PM conversion

2-332

Memoryless Nonlinearity

Saleh Model

[aa}
[}

Cutput Phase Change [AM/PM)

Cutput Vaoltage [ARANM)
o

a 0z 04 0B 08 1 12 1.4 16 1.8 2
Input “oltage

Example with 16-ary QAM

You can see the effect of the Memoryless Nonlinearity block on a signal
modulated by 16-ary quadrature amplitude modulation (QAM) in a
scatter plot. The constellation for 16-ary QAM without the effect of the
Memoryless Nonlinearity block is shown in the following figure:

2-333

Memoryless Nonlinearity

0.2
0.15
D1 * * * *
o
= 005
% * * * *
Z
wm D
=
o
'13 * * * *
3-0.05
D1 * * * *
0.15
0.2
D2 015 01 005 0 00s 01 015 02

In-phase Amplitude
You can generate a scatter plot of the same signal after it passes through

the Memoryless Nonlinearity block, with the Method parameter set to
Saleh Model, as shown in the following figure.

2-334

Memoryless Nonlinearity

CQuadrature Amplitude
(o]

0.1

015

0.25

4025 02 015 01 005 0 005 01 015 02 025
In-phase Amplitude

This plot is generated by the model described in “Scatter Plot Examples”
with the following parameter settings for the Rectangular QAM
Modulator Baseband block:

¢ Normalization method set to Average Power

* Average power (watts) set to 1e-2

The following sections discuss parameters specific to the Saleh,
Ghorbani, and Rapp models.

Parameters for the Saleh Model

The Input scaling (dB) parameter scales the input signal before the
nonlinearity is applied. The block multiplies the input signal by the
parameter value, converted from decibels to linear units. If you set the
parameter to be the inverse of the input signal amplitude, the scaled
signal has amplitude normalized to 1.

2-335

Memoryless Nonlinearity

2-336

The AM/AM parameters, alpha and beta, are used to compute the
amplitude gain for an input signal using the following function:

alpha *u

FAM/AM(u)Z—
1+ beta *u?

where u is the magnitude of the scaled signal.

The AM/PM parameters, alpha and beta, are used to compute the phase
change for an input signal using the following function:

alpha * u?

Fayrip) = ———
1+ beta * 12

where u is the magnitude of the scaled signal. Note that the AM/AM
and AM/PM parameters, although similarly named alpha and beta,
are distinct.

The Output scaling (dB) parameter scales the output signal similarly.
Parameters for the Ghorbani Model

The Input scaling (dB) parameter scales the input signal before the
nonlinearity is applied. The block multiplies the input signal by the
parameter value, converted from decibels to linear units. If you set the
parameter to be the inverse of the input signal amplitude, the scaled
signal has amplitude normalized to 1.

The AM/AM parameters, [x, X, X, X,], are used to compute the amplitude
gain for an input signal using the following function:

X.
xu?
Fap/am @) = ———+xqu
1+ xqu™

where u is the magnitude of the scaled signal.

The AM/PM parameters, [y, y, y; y,l, are used to compute the phase
change for an input signal using the following function:

Memoryless Nonlinearity

Yo
yiu
Faprrpy@) =—2—+yqu
1+ ygu”?

where u is the magnitude of the scaled signal.
The Output scaling (dB) parameter scales the output signal similarly.
Parameters for the Rapp Model

The Linear gain (dB) parameter scales the input signal before the
nonlinearity is applied. The block multiplies the input signal by the
parameter value, converted from decibels to linear units. If you set the
parameter to be the inverse of the input signal amplitude, the scaled
signal has amplitude normalized to 1.

The Smoothness factor and Output saturation level parameters
are used to compute the amplitude gain for the input signal:

u

Fapr/am@) =
95 \L/28

Y
Osat

where u is the magnitude of the scaled signal, S is the Smoothness
factor, and O_, is the Output saturation level.

The Rapp model does not apply a phase change to the input signal.

The Output saturation level parameter limits the output signal level.

2-337

Memoryless Nonlinearity

L]
Dla Iog E! Function Block Parameters: Memoryless Nonlineai ﬂ
Box —Memoryless Monlinearity [mazk)] (link]
Complex bazeband model of memoryless nonlinearity.

Twao of the five methods [Cubic Polynomial and Hyperbolic Tangent] fit Ak A4k
curves to measured data provided by the gain and third order intercept paint [[IF3]
parameters. They generate a linear Ak /P characteristic within the user-specified
input power limits. Outside those limits, the AM/PM is constant.

The other three methods use models oniginated by S aleh, Ghorbani, and Rapp. The
Saleh and Ghorbani models are based on nomalized nonlinear transfer functions.
Uze the Input scaling and Output scaling parameters to adjust signal levels up or
down fram their nomalized values.

ic polynomial
Linear gain [dB]:
Jo
1IP3 [dBm]:
Ja0

AMIPM conversion [degrees per dBJ:
Jio
Lower input power limit for Ak4/P conversion [dBm]:
Jio
Upper input power limit for Ak4/PM conversion [dBm]:
Jinf

QK I Cancel Help Apply

Method
The nonlinearity method.

The following describes specific parameters for each method.

2-338

Memoryless Nonlinearity

(EENRRE Cubic polyniomial
Linear gain [dB]:

Jo

1IP3 [dBm]:

Ja0

AMIPM conversion [degrees per dB):

Jio

Lower input power limit for Ak /P conversion [dBm]:
Jio

Upper input power limit for Ak /P conversion [dBm]:
Jint

Linear gain (db)
Scalar specifying the linear gain for the output function.

IIP3 (dBm)
Scalar specifying the third order intercept.

AM/PM conversion (degrees per dB)
Scaler specifying the AM/PM conversion in degrees per decibel.

Lower input power limit (dBm)
Scalar specifying the minimum input power for which AM/PM
conversion scales linearly with input power value. Below this
value, the phase shift resulting from AM/PM conversion is zero.

Upper input power limit (dBm)
Scalar specifying the maximum input power for which AM/PM
conversion scales linearly with input power value. Above this
value, the phase shift resulting from AM/PM conversion is
constant. The value of this maximum shift is given by:

(AM/PM conversion) - (upper input power limit — lower input power limit)

2-339

Memoryless Nonlinearity

[t E Hyperbolic tangent
Linear gain [dB]:

Jo

1IP3 [dBm]:

Ja0

AMIPM conversion [degrees per dBJ:

Jio

Lower input power limit for 2k4/PM conversion [dBm]:
Jio

Upper input power limit for 2k4/PM conversion [dBm]:
Jint

Linear gain (db)
Scalar specifying the linear gain for the output function.

IIP3 (dBm)
Scalar specifying the third order intercept.

AM/PM conversion (degrees per dB)
Scalar specifying the AM/PM conversion in degrees per decibel.

Lower input power limit (dBm)
Scalar specifying the minimum input power for which AM/PM
conversion scales linearly with input power value. Below this
value, the phase shift resulting from AM/PM conversion is zero.

Upper input power limit (dBm)
Scalar specifying the maximum input power for which AM/PM
conversion scales linearly with input power value. Above this
value, the phase shift resulting from AM/PM conversion is
constant. The value of this maximum shift is given by:

(AM/PM conversion) - (upper input power limit — lower input power limit)

2-340

Memoryless Nonlinearity

Methad: ISaIeh madel j
Input zcaling [dB):

jo

AMAAM parameters [alpha beta]:

121587 1.1517]

AMIPM parameters [alpha beta]:

J14.0033 8.1040]

Output zcaling [dB]:
jo

Input scaling (dB)
Number that scales the input signal level.

AM/AM parameters [alpha beta]
Vector specifying the AM/AM parameters.

AM/PM parameters [alpha betal]
Vector specifying the AM/PM parameters.

Output scaling (dB)
Number that scales the output signal level.

=

Methad: IGhorbani madel j
Input zcaling [dB):

jo

AbAAM parameters [#1 =2 x3 #4]:

|[8.1 081 1.5413 £.5202 -0.0718]

AMAPM parameters [l p2 w3 pd]

|[4.BB45 2.0965 10.88 -0.003]

Output zcaling [dB]:
jo

Input scaling (dB)
Number that scales the input signal level.

AM/AM parameters [x1 x2 x3 x4]
Vector specifying the AM/AM parameters.

2-341

Memoryless Nonlinearity

AM/PM parameters [yl y2 y3 y4]
Vector specifying the AM/PM parameters.

Output scaling (dB)
Number that scales the output signal level.

=

Method: IHapp madel j
Linear gain [dB]:
jo

Smoothness factar:
|05

Output zaturation level:

1

Linear gain (db)
Scalar specifying the linear gain for the output function.

Smoothness factor
Scalar specifying the smoothness factor

Output saturation level
Scalar specifying the the output saturation level.

See Also 1I/Q Imbalance

Reference [1] Saleh, A.A.M., "Frequency-independent and frequency-dependent
nonlinear models of TWT amplifiers," IEEE Trans. Communications,
vol. COM-29, pp.1715-1720, November 1981.

[2] A. Ghorbani, and M. Sheikhan, "The effect of Solid State Power
Amplifiers (SSPAs) Nonlinearities on MPSK and M-QAM Signal
Transmission", Sixth Int’l Conference on Digital Processing of Signals
in Comm., 1991, pp. 193-197.

[3] C. Rapp, "Effects of HPA-Nonlinearity on a 4-DPSK/OFDM-Signal
for a Digitial Sound Broadcasting System", in Proceedings of the Second

2-342

Memoryless Nonlinearity

European Conference on Satellite Communications, Liege, Belgium,
Oct. 22-24, 1991, pp. 179-184.

2-343

M-FSK Demodulator Baseband

Purpose

Library

Description

2-344

AL

hd-F Sk

Demodulate FSK-modulated data
FM, in Digital Baseband sublibrary of Modulation

The M-FSK Demodulator Baseband block demodulates a signal that
was modulated using the M-ary frequency shift keying method. The
input is a baseband representation of the modulated signal. The input
and output for this block are discrete-time signals. The input can be
either a scalar or a frame-based column vector of type single or double.

The M-ary number parameter, M, is the number of frequencies in
the modulated signal. The Frequency separation parameter is the
distance, in Hz, between successive frequencies of the modulated signal.

The M-FSK Demodulator Baseband block implements a non-coherent
energy detector. To obtain the same BER performance as that of
coherent FSK demodulation, use the CPFSK Demodulator Baseband
block.

Binary or Integer Outputs

If the Qutput type parameter is set to Integer, then the block outputs
integers between 0 and M-1.

If the Output type parameter is set to Bit and the M-ary number
parameter has the form 2K for some positive integer K, then the block
outputs binary representations of integers between 0 and M-1. It
outputs a group of K bits, called a binary word, for each symbol.

For boolean typed integer outputs, the M-ary number parameter
must be 2. For Bit type outputs, the outputs must be of type boolean
or double.

In binary output mode, the Symbol set ordering parameter indicates
how the block maps an integer to a corresponding group of K output
bits. See the reference pages for theM-FSK Modulator Baseband
andM-PSK Modulator Baseband blocks for details.

Whether the output is an integer or a binary representation of an
integer, the block maps the highest frequency to the integer 0 and maps
the lowest frequency to the integer M-1. In baseband simulation, the

M-FSK Demodulator Baseband

lowest frequency is the negative frequency with the largest absolute
value.

.
DIG IOg E! Function Block Parameters: M-FSK Demodulato x|

Box —M-F5SK. Demaodulator Baseband [mask] [link]

Demodulate the input signal using the frequency shift keying method.

For zample-based input, the input must be a scalar. For frame-bazed input, the input
must be a column vectar.

The output can be either bitz or integers. |n case of bit output, the output width iz an
integer multiple of the number of bits per symbal. The output spmbols can be either
binary-demapped or Gray-demapped.

I case of frame-based input, the width of the input frame represents the product of the
number of symbols and the Samples per symbal value.

I case of sample-bazed input, the sample time of the input is the symbal period divided
by the Samples per spmbol value.

=
F

-y number:
]

Olutput bype: I Integer

L L«

Symbol zet ordering: I Binary
Frequency separation [Hz]:
3

Samples per symbal:

7
Output data type: | double LI

Ok I Lancel Help | Lpply |

M-ary number
The number of frequencies in the modulated signal.

Output type
Determines whether the output consists of integers or groups of
bits. If this parameter is set to Bit, then the M-ary number
parameter must be 2X for some positive integer K.

Symbol set ordering
Determines how the block maps each integer to a group of output
bits.

2-345

M-FSK Demodulator Baseband

Pair Block
See Also

2-346

Frequency separation (Hz)
The distance between successive frequencies in the modulated
signal.

Samples per symbol
The number of input samples that represent each modulated
symbol.

Output data type
The output type of the block can be specified here as boolean,
int8, uint8, int16, uint16, int32, uint32, or double. By default,
the block sets this to double.

M-FSK Modulator Baseband

CPFSK Demodulator Baseband

M-FSK Modulator Baseband

Purpose
Library

Description

L e

h-F Sk

Modulate using M-ary frequency shift keying method
FM, in Digital Baseband sublibrary of Modulation

The M-FSK Modulator Baseband block modulates using the M-ary
frequency shift keying method. The output is a baseband representation
of the modulated signal.

The M-ary number parameter, M, is the number of frequencies in
the modulated signal. The Frequency separation parameter is the
distance, in Hz, between successive frequencies of the modulated signal.

The sampling frequency must be less than half of the Frequency
separation (Hz) or there will be aliasing. Sampling frequency is
Samples per symbol divided by the input symbol period (in seconds).

If the Phase continuity parameter is set to Continuous, then the
modulated signal maintains its phase even when it changes its
frequency. If the Phase continuity parameter is set to Discontinuous,
then the modulated signal comprises portions of M sinusoids of different
frequencies; thus, a change in the input value might cause a change in
the phase of the modulated signal.

Input Signal Values

The input and output for this block are discrete-time signals. The Input
type parameter determines whether the block accepts integers between
0 and M-1, or binary representations of integers:

¢ If Input type is set to Integer, then the block accepts integers. The
input can be either a scalar or a frame-based column vector of type
int8, uint8, int16, uint16, int32, uint32, or a double with an
integer value. They can also be boolean if the size of the alphabet is
2 (i.e. M =2).

¢ If Input type is set to Bit, then the block accepts groups of K bits,
called binary words. The input can be either a vector of length K or a
frame-based column vector (whose length is an integer multiple of
K), and must be boolean or double typed, valued from the set {0,

2-347

M-FSK Modulator Baseband

Dialog
Box

2-348

1}. The Symbol set ordering parameter indicates how the block
assigns binary words to corresponding integers.

= If Symbol set ordering is set to Binary, then the block uses a

natural binary-coded ordering.

= If Symbol set ordering is set to Gray, then the block uses a

Gray-coded ordering. For details about

the Gray coding, see the

reference page for theM-PSK Modulator Baseband block.

Whether the input is an integer or a binary representation of an integer,
the block maps the integer 0 to the highest frequency and maps the
integer M-1 to the lowest frequency. In baseband simulation, the lowest
frequency is the negative frequency with the largest absolute value.

JFunction Block Parameters: M-FSK Modulator B

—b-FSE. Modulator Bazeband [mazk) [link]

x|

Modulate the input zsignal uging the frequency shift keying method.

The input can be either bits or integers. In caze of sample-based bit input, the input
width must equal the number of bits per symbol. In case of frame-bazed bit input, the
input width must be an integer multiple of the number of bits per symbal.

For zample-based integer input, the input must be a scalar. For frame-based integer
input, the input must be a column vector.

The inputs can be either binary-mapped or Gray-mapped into spmbols.

I cage of frame-based input, the width of the output frame equals the product of the
number of symbols and the Samples per symbal value.

I case of sample-bazed input, the output sample time equals the symbal period
divided by the Samples per symbal value.

=

-y number:

[4

Input type: I Integer

L L«

Symbol zet ordering: I Binary

Frequency separation [Hz]:

3

Phaze continuity: I Continuous LI

Samples per symbal:

7

Output data type: | double LI

Ok I Lancel Help | Lpply

M-FSK Modulator Baseband

Pair Block
See Also

M-ary number
The number of frequencies in the modulated signal.

Input type
Indicates whether the input consists of integers or groups of
bits. If this parameter is set to Bit, then the M-ary number
parameter must be 2K for some positive integer K.

Symbol set ordering
Determines how the block maps each group of input bits to a
corresponding integer.

Frequency separation (Hz)
The distance between successive frequencies in the modulated
signal.

Phase continuity
Determines whether the modulated signal changes phases in a
continuous or discontinuous way.

Samples per symbol
The number of output samples that the block produces for each
integer or binary word in the input.

Output data type
The output type of the block can be specified as either a double or
a single. By default, the block sets this to double.

M-FSK Demodulator Baseband

CPFSK Modulator Baseband

2-349

MLSE Equalizer

Purpose

Library

Description

2-350

PIFK

MLSE Equalizer

Equalize using Viterbi algorithm
Equalizers

The MLSE Equalizer block uses the Viterbi algorithm to equalize a
linearly modulated signal through a dispersive channel. The block
receives a frame-based input signal and outputs the maximum
likelihood sequence estimate (MLSE) of the signal, using an estimate of
the channel modeled as a finite input response (FIR) filter.

This block supports single and double data types.
Channel Estimates

The channel estimate takes the form of a column vector containing the
coefficients of an FIR filter in descending order of powers. The length
of this vector is the channel memory, which must be a multiple of the
block’s Samples per input symbol parameter.

To specify the channel estimate vector, use one of these methods:

* Set Specify channel via to Dialog and enter the vector in the
Channel coefficients field.

* Set Specify channel via to Input port. The block displays an
additional input port, labeled Ch, that receives a frame-based vector.

Signal Constellation

The Signal constellation parameter specifies the constellation for
the modulated signal, as determined by the modulator in your model.
Signal constellation is a vector of complex numbers, where the kth
complex number in the vector is the constellation point to which the
modulator maps the integer k-1.

Note The sequence of constellation points must be consistent between
the modulator in your model and the Signal constellation parameter
in this block.

MLSE Equalizer

For example, to specify the constellation given by the mapping

0—+1+:
1->-1+i
2—-1-1
3—>+1-1i

set Constellation points to [1+i, -1+i, -1-i, 1-i]. Note that the
sequence of numbers in the vector indicates how the modulator maps
integers to the set of constellation points. The labeled constellation

is shown below.

Preamble and Postamble

If your data is accompanied by a preamble (prefix) or postamble (suffix),
then configure the block accordingly:

2-351

MLSE Equalizer

2-352

® If you select Input contains preamble, then the Expected
preamble parameter specifies the preamble that you expect to
precede the data in the input signal.

¢ If you check the Input contains postamble, then the Expected
postamble parameter specifies the postamble that you expect to
follow the data in the input signal.

The Expected preamble or Expected postamble parameter must
be a vector of integers between 0 and M-1, where M is the number of
constellation points. An integer value of k-1 in the vector corresponds to
the kth entry in the Constellation points vector and, consequently, to
a modulator input of k-1.

The preamble or postamble must already be included at the beginning or
end, respectively, of the input signal to this block. If necessary, you can
conca